Closure of pointed cones and maximum principle in Hilbert spaces
- 
							
								
							
								Paolo D‘alessandro
							
							
															
									
									
									dalex@mat.uniroma3.it
									
								
													
							
						 
Downloads
DOI:
https://doi.org/10.4067/S0719-06462011000200004Abstract
We prove, in a Hilbert space setting, that all targets of the minimum norm optimal control problems reachable with inputs of minimum norm Ï are support points for the the set reachable by inputs with norm bounded by Ï. This amount to say that the Maximum Principle always holds in Hilbert Spaces.
Keywords
Most read articles by the same author(s)
- Paolo D‘alessandro, An immediate derivation of maximum principle in Banach spaces, assuming reflexive input and state spaces , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
 
Similar Articles
- Mark A. Pinsky, Asymptotic Solutions of Linear Differential Equations , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
 - Matt Insall, Substitutions of the Independent Variable in Linear Differential Equations , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
 - M. W. Wong, Erhling's Inequality and Pseudo-Differential Operators on ð¿áµ–(IRá´º) , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
 - T. Zolezzi, Sliding Mode Control , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
 - C.W. Groetsch, Tartaglia's Bet , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
 - Vikram Singh, Dwijendra N Pandey, Weighted pseudo Almost periodic solutions for fractional order stochastic impulsive differential equations , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
 - Sushanta Kumar Mohanta, Coupled coincidence points for generalized (ψ, ϕ)-pair mappings in ordered cone metric spaces , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
 - Alexander Pankov, Discrete almost periodic operators , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
 - Philip J. Maher, Mohammad Sal Moslehian, More on approximate operators , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
 - László Kapolyi, Network Oligopolies with Multiple Markets , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
 
<< < 10 11 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.
						










