Closure of pointed cones and maximum principle in Hilbert spaces
-
Paolo D‘alessandro
dalex@mat.uniroma3.it
Downloads
DOI:
https://doi.org/10.4067/S0719-06462011000200004Abstract
We prove, in a Hilbert space setting, that all targets of the minimum norm optimal control problems reachable with inputs of minimum norm Ï are support points for the the set reachable by inputs with norm bounded by Ï. This amount to say that the Maximum Principle always holds in Hilbert Spaces.
Keywords
Most read articles by the same author(s)
- Paolo D‘alessandro, An immediate derivation of maximum principle in Banach spaces, assuming reflexive input and state spaces , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
Similar Articles
- Saeid Jafari, Raja Mohammad Latif, Seithuti P. Moshokoa, A note on generalized topological spaces and preorder , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- V. Renukadevi, On subsets of ideal topological spaces , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Rinko Shinzato, Wataru Takahashi, A Strong Convergence Theorem by a New Hybrid Method for an Equilibrium Problem with Nonlinear Mappings in a Hilbert Space , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Elke Wolf, Isometric weighted composition operators on weighted Banach spaces of holomorphic functions defined on the unit ball of a complex Banach space , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Anthony Sofo, Families of skew linear harmonic Euler sums involving some parameters , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Rodrigue Sanou, Idrissa Ibrango, Blaise Koné, Aboudramane Guiro, Weak solutions to Neumann discrete nonlinear system of Kirchhoff type , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Radu Miron, Lagrange and Hamilton Spaces: Geometrical Models in Mechanics, new Theoretical Physics, Variational Calculus and Optimal Control , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Ajay Kumar, Ekta Tamrakar, Inertial algorithm for solving split inclusion problem in Banach spaces , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2011-06-01
How to Cite
[1]
P. D‘alessandro, “Closure of pointed cones and maximum principle in Hilbert spaces”, CUBO, vol. 13, no. 2, pp. 73–84, Jun. 2011.
Issue
Section
Articles











