Generalized quadrangles and subconstituent algebra
-
Fernando Levstein
levstein@famaf.unc.edu.ar
-
Carolina Maldonado
cmaldona@famaf.unc.edu.ar
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000200005Abstract
The point graph of a generalized quadrangle GQ(s, t) is a strongly regular graph Γ = srg(ν, κ, λ, µ) whose parameters depend on s and t. By a detailed analysis of the adjacency matrix we compute the Terwilliger algebra of this kind of graphs (and denoted it by T ). We find that there are only two non-isomorphic Terwilliger algebras for all the generalized quadrangles. The two classes correspond to wether s2 = t or not. We decompose the algebra into direct sum of simple ideals. Considering the action T × â„‚X → â„‚X we find the decomposition into irreducible T-submodules of â„‚X (where X is the set of vertices of the Γ).
Keywords
Similar Articles
- Rubí E. Rodríguez, Anita M. Rojas, Matías Saavedra-Lagos, Representaciones lineales irreducibles de grupos finitos en cuerpos de números , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Asa Ashley, Ferhan M. Atıcı, Samuel Chang, A note on constructing sine and cosine functions in discrete fractional calculus , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- Terje Hill, David A. Robbins, Vector-valued algebras and variants of amenability , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
You may also start an advanced similarity search for this article.











