Operator homology and cohomology in Clifford algebras
-
René Schott
schott@loria.fr
-
G. Stacey Staples
sstaple@siue.edu
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000200018Abstract
In recent work, the authors used canonical lowering and raising operators to define Appell systems on Clifford algebras of arbitrary signature. Appell systems can be interpreted as polynomial solutions of generalized heat equations, and in probability theory they have been used to obtain non-central limit theorems. The natural grade-decomposition of a Clifford algebra of arbitrary signature lends it a natural Appell system decomposition. In the current work, canonical raising and lowering operators defined on a Clifford algebra of arbitrary signature are used to define chains and cochains of vector spaces underlying the Clifford algebra, to compute the associated homology and cohomology groups, and to derive long exact sequences of underlying vector spaces. The vector spaces appearing in the chains and cochains correspond to the Appell system decomposition of the Clifford algebra. Using Mathematica, kernels of lowering operators ∇ and raising operators ℛ are explicitly computed, giving solutions to equations ∇ x = 0 and ℛ x = 0. Connections with quantum probability and graphical interpretations of the lowering and raising operators are discussed.
Keywords
Similar Articles
- George A. Anastassiou, Approximation by discrete singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Akio Matsumoto, Ferenc Szidarovszky, An elementary study of a class of dynamic systems with two time delays , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Sehie Park, Remarks on KKM Maps and Fixed Point Theorems in Generalized Convex Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Gina Lusares, Armando Rodado Amaris, Parametrised databases of surfaces based on Teichmüller theory , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- Filippo Cammaroto, Infinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operator , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Vicente Muñoz, Leray-Serre Spectral Sequence for Quasi-Fibrations , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Manuel Saavedra, Helmuth Villavicencio, On the minimum ergodic average and minimal systems , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Najja Al-Islam, Diagana space and the gas absorption model , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Moussa Barro, Sado Traoré, Level sets regularization with application to optimization problems , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Akio Matsumoto, Ferenc Szidarovszky, An Elementary Study of a Class of Dynamic Systems with Single Time Delay , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
<< < 2 3 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.










