Operator homology and cohomology in Clifford algebras
-
René Schott
schott@loria.fr
-
G. Stacey Staples
sstaple@siue.edu
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000200018Abstract
In recent work, the authors used canonical lowering and raising operators to define Appell systems on Clifford algebras of arbitrary signature. Appell systems can be interpreted as polynomial solutions of generalized heat equations, and in probability theory they have been used to obtain non-central limit theorems. The natural grade-decomposition of a Clifford algebra of arbitrary signature lends it a natural Appell system decomposition. In the current work, canonical raising and lowering operators defined on a Clifford algebra of arbitrary signature are used to define chains and cochains of vector spaces underlying the Clifford algebra, to compute the associated homology and cohomology groups, and to derive long exact sequences of underlying vector spaces. The vector spaces appearing in the chains and cochains correspond to the Appell system decomposition of the Clifford algebra. Using Mathematica, kernels of lowering operators ∇ and raising operators ℛ are explicitly computed, giving solutions to equations ∇ x = 0 and ℛ x = 0. Connections with quantum probability and graphical interpretations of the lowering and raising operators are discussed.
Keywords
Similar Articles
- Najja Al-Islam, Diagana space and the gas absorption model , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Manuel Saavedra, Helmuth Villavicencio, On the minimum ergodic average and minimal systems , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- M. T. Alcalde, Ricardo Baeza, Cesar Burgueño, Caracterización en Álgebras de Bernstein , CUBO, A Mathematical Journal: No. 4 (1988): CUBO, Revista de Matemática
- Akio Matsumoto, Ferenc Szidarovszky, An Elementary Study of a Class of Dynamic Systems with Single Time Delay , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Venkatesha, Shanmukha B., \(W_2\)-curvature tensor on generalized Sasakian space forms , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Mehdi Dehghanian, Choonkil Park, Yamin Sayyari, Stability of ternary antiderivation in ternary Banach algebras via fixed point theorem , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Akio Matsumoto, Ferenc Szidarovszky, An elementary study of a class of dynamic systems with two time delays , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- S. Minkevicius, About cumulative idle time model of the message switching system , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Luiz Antonio Pereira Gomes, Eduardo Brandani da Silva, A Characterization of the Product Hardy Space 𻹠, CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.










