Entire Functions in Weighted ð˜“â‚‚ and Zero Modes of the Pauli Operator with Non-Signdefinite Magnetic Field
-
Grigori Rozenblum
grigori@math.chalmers.se
-
Nikolay Shirokov
nikolai.shirokov@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000100011Abstract
For a real non-signdefinite function B(z), z ∈ â„‚, we investigate the dimension of the space of entire analytical functions square integrable with weight e±2F, where the function F(z) = F(x1, x2) satisfies the Poisson equation ∆F = B. The answer is known for the function B with constant sign. We discuss some classes of non-signdefinite positively homogeneous functions B, where both infinite and zero dimension may occur. In the former case we present a method of constructing entire functions with prescribed behavior at infinity in different directions. The topic is closely related with the question of the dimension of the zero energy subspace (zero modes) for the Pauli operator.
Keywords
Similar Articles
- Abdelhamid Bensalem, Abdelkrim Salim, Bashir Ahmad, Mouffak Benchohra, Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fréchet spaces , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Seyed Mostafa Sajjadi, Ghasem Alizadeh Afrouzi, On a class of fractional \(p(x,y)-\)Kirchhoff type problems with indefinite weight , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Sirkka-Liisa Eriksson, Heikki Orelma, A simple construction of a fundamental solution for the extended Weinstein equation , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- René Erlin Castillo, Héctor Camilo Chaparro, Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
You may also start an advanced similarity search for this article.











