On mapping properties of monogenic functions
-
K. Gürlebeck
guerlebe@fossi.uni-weimar.de
-
J. Morais
jmorais@mat.ua.pt
Downloads
Abstract
Main goal of this paper is to study the description of monogenic functions by their geometric mapping properties. At first monogenic functions are studied as general quasi-conformal mappings. Moreover, dilatations and distortions of these mappings are estimated in terms of the hypercomplex derivative. Then pointwise estimates from below and from above are given by using a generalized Bohr‘s theorem and a Borel-Carathéodory theorem for monogenic functions. Finally it will be shown that mono- genic functions can be defined as mappings which map infinitesimal balls to special ellipsoids.
Keywords
Most read articles by the same author(s)
- S. Georgiev, J. Morais, W. Spross, New Aspects on Elementary Functions in the Context of Quaternionic Analysis , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
Similar Articles
- John Ryan, Basic Clifford Analysis , CUBO, A Mathematical Journal: Vol. 2 No. 1 (2000): CUBO, Matemática Educacional
- Cristián Mallol, Una clase práctica de Axiomatización , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Shing So, Recent Developments in Taxicab Geometry , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Charalampos Tsitouras, Explicit Runge-Kutta methods for the numerical solution of initial value problems , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Gastón E. Hernández, Behavior of multiple solutions for systems of semilinear elliptic equations , CUBO, A Mathematical Journal: No. 11 (1995): CUBO, Revista de Matemática
- George A. Anastassiou, Approximation by Shift Invariant Univariate Sublinear-Shilkret Operators , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- B. K. Tyagi, Sheetal Luthra, Harsh V. S. Chauhan, On New Types of Sets Via γ-open Sets in (ð‘Ž)Topological Spaces , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- George A. Anastassiou, Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Naoyuki Koike, Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
<< < 13 14 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.











