On mapping properties of monogenic functions
- 
							
								
							
								K. Gürlebeck
							
							
															
									
									
									guerlebe@fossi.uni-weimar.de
									
								
													
							
						 - 
							
								
							
								J. Morais
							
							
															
									
									
									jmorais@mat.ua.pt
									
								
													
							
						 
Downloads
Abstract
Main goal of this paper is to study the description of monogenic functions by their geometric mapping properties. At first monogenic functions are studied as general quasi-conformal mappings. Moreover, dilatations and distortions of these mappings are estimated in terms of the hypercomplex derivative. Then pointwise estimates from below and from above are given by using a generalized Bohr‘s theorem and a Borel-Carathéodory theorem for monogenic functions. Finally it will be shown that mono- genic functions can be defined as mappings which map infinitesimal balls to special ellipsoids.
Keywords
Most read articles by the same author(s)
- S. Georgiev, J. Morais, W. Spross, New Aspects on Elementary Functions in the Context of Quaternionic Analysis , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
 
Similar Articles
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
 - B. K. Tyagi, Sheetal Luthra, Harsh V. S. Chauhan, On New Types of Sets Via γ-open Sets in (ð‘Ž)Topological Spaces , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
 - George A. Anastassiou, Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
 - Naoyuki Koike, Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
 - Abdelouaheb Ardjouni, Ahcene Djoudi, Study of global asymptotic stability in nonlinear neutral dynamic equations on time scales , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
 - George A. Anastassiou, Ostrowski-Sugeno fuzzy inequalities , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
 - B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
 - Silvestru Sever Dragomir, Bounds for the generalized \( (\Phi;f) \)-mean difference , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
 - T.M.M. Sow, A new iterative method based on the modified proximal-point algorithm for finding a common null point of an infinite family of accretive operators in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
 - A. Kamal, T.I. Yassen, D-metric Spaces and Composition Operators Between Hyperbolic Weighted Family of Function Spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
 
<< < 14 15 16 17 18 19 20 21 22 23 24 25 > >>
You may also start an advanced similarity search for this article.
						










