Green Function for a Two-Dimensional Discrete Laplace-Beltrami Operator
-
Volodymyr Sushch
volodymyr.sushch@tu.koszalin.pl
Downloads
Abstract
We study a discrete model of the Laplacian in â„2 that preserves the geometric structure of the original continual object. This means that, speaking of a discrete model, we do not mean just the direct replacement of differential operators by difference ones but also a discrete analog of the Riemannian structure. We consider this structure on the appropriate combinatorial analog of differential forms. Self-adjointness and boundness for a discrete Laplacian are proved. We define the Green function for this operator and also derive an explicit formula of the one.
Keywords
Most read articles by the same author(s)
- Volodymyr Sushch, Discrete model of Yang-Mills equations in Minkowski space , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- Volodymyr Sushch, Self-Dual and Anti-Self-Dual Solutions of Discrete Yang-Mills Equations on a Double Complex , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
Similar Articles
- Alexander A. Kovalevsky, Francesco Nicolosi, On a condition for the nonexistence of \(W\)-solutions of nonlinear high-order equations with L\(^1\) -data , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Goutam Haldar, Uniqueness of entire functions whose difference polynomials share a polynomial with finite weight , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga, Fritz Mbounja Béssémè, Convolutions in \((\mu,\nu)\)-pseudo-almost periodic and \((\mu,\nu)\)-pseudo-almost automorphic function spaces and applications to solve integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Youssef N Raffoul, Stability and boundedness in nonlinear and neutral difference equations using new variation of parameters formula and fixed point theory , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Michael Holm, Sum and Difference Compositions in Discrete Fractional Calculus , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- T. A. Burton, Bo Zhang, Bounded and periodic solutions of integral equations , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Vadim N. Biktashev, Envelope equations for modulated non-conservative waves , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Aparajita Dasgupta, M.W. Wong, The semigroup and the inverse of the Laplacian on the Heisenberg group , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Muhammad N. Islam, Youssef N. Raffoul, Bounded Solutions and Periodic Solutions of Almost Linear Volterra Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











