Green Function for a Two-Dimensional Discrete Laplace-Beltrami Operator
-
Volodymyr Sushch
volodymyr.sushch@tu.koszalin.pl
Downloads
Abstract
We study a discrete model of the Laplacian in â„2 that preserves the geometric structure of the original continual object. This means that, speaking of a discrete model, we do not mean just the direct replacement of differential operators by difference ones but also a discrete analog of the Riemannian structure. We consider this structure on the appropriate combinatorial analog of differential forms. Self-adjointness and boundness for a discrete Laplacian are proved. We define the Green function for this operator and also derive an explicit formula of the one.
Keywords
Most read articles by the same author(s)
- Volodymyr Sushch, Discrete model of Yang-Mills equations in Minkowski space , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- Volodymyr Sushch, Self-Dual and Anti-Self-Dual Solutions of Discrete Yang-Mills Equations on a Double Complex , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
Similar Articles
- G. Suresh, Ch Vasavi, T.S. Rao, M.S.N. Murty, Existence of Ψ-Bounded Solutions for Linear Matrix Difference Equations on Z+ , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Youssef N. Raffoul, Ernest Yankson, Positive periodic solutions of functional discrete systems with a parameter , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Hassan Sedaghat, Global Attractivity, Oscillations and Chaos in A Class of Nonlinear, Second Order Difference Equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- E. A. Grove, E. Lapierre, W. Tikjha, On the global behavior of ð‘¥áµ¤â‚Šâ‚ = |ð‘¥áµ¤|− ð‘¦áµ¤ − 1 and ð‘¦áµ¤â‚Šâ‚ = ð‘¥áµ¤ +|ð‘¦áµ¤| , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Giuseppe Da Prato, Elliptic operators with infinitely many variables , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- Zhenlai Han, Shurong Sun, Symplectic Geometry Applied to Boundary Problems on Hamiltonian Difference Systems , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- E. A. Grove, G. Ladas, Periodicity in Nonlinear Difference Equations , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- N. S. Gopal, J. M. Jonnalagadda, Positive solutions of nabla fractional boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Martin Bohner, Julius Heim, Ailian Liu, Solow models on time scales , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- L. K. Kikina, I.P. Stavroulakis, A Survey on the Oscillation of Solutions of First Order Delay Difference Equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











