Gr¨obner and diagonal bases in Orlik-Solomon type algebras
-
Raúl Cordovil
cordovil@math.ist.utl.pt
-
David Forge
forge@lri.fr
Downloads
Abstract
The Orlik-Solomon algebra of a matroid M is the quotient of the exterior algebra on the points by the ideal ð”(M) generated by the boundaries of the circuits of the matroid. There is an isomorphism between the Orlik-Solomon algebra of a complex matroid and the cohomology of the complement of a complex arrangement of hyperplanes. In this article a generalization of the Orlik-Solomon algebras, called χ-algebras, are considered. These new algebras include, apart from the Orlik-Solomon algebras, the Orlik-Solomon-Terao algebra of a set of vectors and the Cordovil algebra of an oriented matroid. To encode an important property of the “no broken circuit bases” of the Orlik-Solomon-Terao algebras, Andr´as Szenes has introduced a particular type of bases, the so called “diagonal bases”. This notion extends naturally to the χ-algebras. We give a survey of the results obtained by the authors concerning the construction of Gr¨obner bases of ð”χ(M) and diagonal bases of Orlik-Solomon type algebras and we present the combinatorial analogue of an “iterative residue formula” introduced by Szenes.
Keywords
Similar Articles
- R. Mendoza, J. Rojas, Função de Correlação e Álgebra Linear , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Ana Fuenzalida, Alicia Labra, Cristian Mallol, On Quasi orthogonal Bernstein Jordan algebras , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
- Paul M. Cohn, The Weyl algebra and its field of fractions , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Mihai Prunescu, Concrete algebraic cohomology for the group (â„, +) or how to solve the functional equation ð‘“(ð‘¥+ð‘¦) - ð‘“(ð‘¥) - ð‘“(ð‘¦) = ð‘”(ð‘¥, ð‘¦) , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
- Carlos Lizama, Una Introducción a Teoría Espectral de Operadores , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- James Oxley, What is a Matroid? , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Takahiro Sudo, Real and stable ranks for certain crossed products of Toeplitz algebras , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Mahmoud Benkhalifa, Note on the \(F_{0}\)-spaces , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- D. Ebrahimi Bagha, M. Amini, Module amenability for Banach modules , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- José Adonai P. Seixas, On Bases of Constant Curvature , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
You may also start an advanced similarity search for this article.