Global Solutions of the Enskog Lattice Equation with Square Well Potential
-
William Greenberg
greenberg@vt.edu
-
Michael Williams
williams@vt.edu
Downloads
Abstract
The nonlinear Enskog equation with a discretized spatial variable is studied in a Banach space of absolutely integrable functions of the velocity variables. The Enskog equation is a kinetic equation of Boltzmann typc which, unlike the Boltzmann equation, is applicable to gases in the moderately dense regime. In this lattice model the generator of free streaming is replaced by a finite difference operator. Conservation laws and positivity are utilized to extend local solutions of a cutoff model to global solutions. Then compactness arguments lead to the existence of weak global solutions of the Enskog lattice equation. Molecular interactions are introduced via a next-nearest neighbor potential, thereby modeling a square well potential.
Keywords
Similar Articles
- M. H. Farag, T. A. Talaat, E. M. Kamal, Existence and uniqueness solution of a class of quasilinear parabolic boundary control problems , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Cheok Choi, Gen Nakamura, Kenji Shirota, Variational approach for identifying a coefficient of the wave equation , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Tatyana A. Komleva, Andrej V. Plotnikov, Natalia V. Skripnik, Some properties of solutions of a linear set-valued differential equation with conformable fractional derivative , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Mihai Prunescu, Concrete algebraic cohomology for the group (â„, +) or how to solve the functional equation ð‘“(ð‘¥+ð‘¦) - ð‘“(ð‘¥) - ð‘“(ð‘¦) = ð‘”(ð‘¥, ð‘¦) , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
- M. E. Luna, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex Numbers and their Elementary Functions , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Yavar Kian, Local energy decay for the wave equation with a time-periodic non-trapping metric and moving obstacle , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Fred Brackx, Hennie De Schepper, Frank Sommen, Liesbet Van de Voorde, Discrete Clifford analysis: an overview , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Gen-Qiang Wang, Sui Sun Cheng, Oscillation of second order differential equation with piecewise constant argument , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Ganga Ram Gautam, Sandra Pinelas, Manoj Kumar, Namrata Arya, Jaimala Bishnoi, On the solution of \(\mathcal{T}-\)controllable abstract fractional differential equations with impulsive effects , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.