The complex Monge-Ampére equation and methods of pluripotential theory
-
Slawomir Kolodziej
Kolodziej@im.uj.edu.pl
Downloads
Abstract
One can prove fairly sharp results on the existence of weak solutions to the complex Monge-Ampére equation applying the methods based on the concept of the positive current. We survey those results both in a strictly pseudoconvex domain and on a compact Kähler manifold.
Keywords
Similar Articles
- Wael Abdelhedi, Minkowski type inequalities for a generalized fractional integral , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Vito Lampret, Estimating the remainder of an alternating \(p\)-series revisited , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Brian Weber, Keaton Naff, Canonical metrics and ambiKähler structures on 4-manifolds with \(U(2)\) symmetry , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Robert Auffarth, Pseudoinversos de morfismos entre variedades abelianas , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- U. Guerrero-Valadez, H. Torres-López, A. G. Zamora, Deformaciones de variedades abelianas con un grupo de automorfismos , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Asa Ashley, Ferhan M. Atıcı, Samuel Chang, A note on constructing sine and cosine functions in discrete fractional calculus , CUBO, A Mathematical Journal: In Press
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2004-03-01
How to Cite
[1]
S. Kolodziej, “The complex Monge-Ampére equation and methods of pluripotential theory”, CUBO, vol. 6, no. 1, pp. 259–279, Mar. 2004.
Issue
Section
Articles











