New approach to prove the existence of classical solutions for a class of nonlinear parabolic equations
-
Svetlin G. Georgiev
svetlingeorgiev1@gmail.com
-
Khaled Zennir
khaledzennir2@yahoo.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000200023Abstract
In this article, we consider a class of nonlinear parabolic equations. We use an integral representation combined with a sort of fixed point theorem to prove the existence of classical solutions for the initial value problem (1.1), (1.2). We also obtain a result on continuous dependence on the initial data. We propose a new approach for investigation for existence of classical solutions of some classes nonlinear parabolic equations.
Keywords
Similar Articles
- Ernest Yankson, Inequalities and sufficient conditions for exponential stability and instability for nonlinear Volterra difference equations with variable delay , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- K. Rajendra Prasad, Mahammad Khuddush, K. V. Vidyasagar, Infinitely many positive solutions for an iterative system of singular BVP on time scales , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Masaya Kawamura, On an \(a\) \(priori\) \(L^\infty\) estimate for a class of Monge-Ampère type equations on compact almost Hermitian manifolds , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Mohamed Bouaouid, Ahmed Kajouni, Khalid Hilal, Said Melliani, A class of nonlocal impulsive differential equations with conformable fractional derivative , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Manuel Saavedra, Helmuth Villavicencio, On the minimum ergodic average and minimal systems , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Raúl Fierro, Sergio Pizarro, Fixed points of set-valued mappings satisfying a Banach orbital condition , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Manoj Bhardwaj, Alexander V. Osipov, Some observations on a clopen version of the Rothberger property , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Abdelilah Azghay, Mohammed Massar, On a class of fractional \(p(\cdot,\cdot)-\)Laplacian problems with sub-supercritical nonlinearities , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Fatima Fennour, Soumia Saïdi, On a class of evolution problems driven by maximal monotone operators with integral perturbation , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
<< < 18 19 20 21 22 23 24 25 > >>
You may also start an advanced similarity search for this article.