Some remarks on the non-real roots of polynomials
-
Shuichi Otake
shuichi.otake.8655@gmail.com
-
Tony Shaska
shaska@oakland.edu
Downloads
DOI:
https://doi.org/10.4067/S0719-06462018000200067Abstract
Let 𖿠∈ â„(ð‘¡)[ð‘¥] be given by ð–¿(ð‘¡, ð‘¥) = ð‘¥ð‘› + ð‘¡ · g(ð‘¥) and β1 < ··· < β𑚠the distinct real roots of the discriminant ∆(ð–¿,ð‘¥)(ð‘¡) of ð–¿(ð‘¡, ð‘¥) with respect to ð‘¥. Let γ be the number of real roots of
For any ξ > |βm|, if ð‘›âˆ’s is odd then the number of real roots of ð–¿(ξ,ð‘¥) is γ + 1, and if ð‘›âˆ’s is even then the number of real roots of ð–¿(ξ,ð‘¥) is γ, γ + 2 if ts > 0 or ts < 0 respectively. A special case of the above result is constructing a family of degree 𑛠≥ 3 irreducible polynomials over ℚ with many non-real roots and automorphism group Sð‘›.
Keywords
Similar Articles
- Sóstenes Lins, A New Application for Room Squares: Tournaments with Internal Referees , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- George A. Anastassiou, Razvan A. Mezei, Uniform convergence with rates of general singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Helmuth R. Malonek, Dixan Peña, Frank Sommen, Fischer decomposition by inframonogenic functions , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- H. M. Srivastava, Fractional calculus and its applications , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
You may also start an advanced similarity search for this article.