Infinitely many positive solutions for an iterative system of singular BVP on time scales
-
K. Rajendra Prasad
rajendra92@rediffmail.com
-
Mahammad Khuddush
khuddush89@gmail.com
-
K. V. Vidyasagar
vidyavijaya08@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462022000100021Abstract
In this paper, we consider an iterative system of singular two-point boundary value problems on time scales. By applying Hölder‘s inequality and Krasnoselskii‘s cone fixed point theorem in a Banach space, we derive sufficient conditions for the existence of infinitely many positive solutions. Finally, we provide an example to check the validity of our obtained results.
Keywords
R. P. Agarwal and M. Bohner, “Basic calculus on time scales and some of its applications”, Results Math., vol. 35, no. 1–2, pp. 3–22, 1999.
R. P. Agarwal, M. Bohner, D. O‘Regan and A. Peterson, “Dynamic equations on time scales: a survey”, J. Comput. Appl. Math., vol. 141, no. 1-2, pp. 1–26, 2002.
R. P. Agarwal, V. Otero-Espinar, K. Perera and D. R. Vivero, “Basic properties of Sobolev‘s spaces on time scales”, Adv. Difference. Equ., Art. ID 38121, 14 pages, 2006.
G. A. Anastassiou, Intelligent mathematics: computational analysis, Intelligent Systems Reference Library, vol. 5, Heidelberg: Springer, 2011.
M. Bohner and H. Luo, “Singular second-order multipoint dynamic boundary value problems with mixed derivatives”, Adv. Difference Equ., Art. ID 54989, 15 pages, 2006.
M. Bohner and A. Peterson, Dynamic equations on time scales: An introduction with applications, Boston: Birkh ̈auser Boston, Inc., 2001.
M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Boston: Birkhäuser Boston, Inc., 2003.
A. Dogan, “Positive solutions of the p-Laplacian dynamic equations on time scales with sign changing nonlinearity”, Electron. J. Differential Equations, Paper No. 39, 17 pages, 2018.
A. Dogan, “Positive solutions of a three-point boundary-value problem for p-Laplacian dynamic equation on time scales”.‘ Ukraïn. Mat. Zh., vol. 72, no. 6, pp. 790–805, 2020.
D. Guo and V. Lakshmikantham, Nonlinear problems in abstract cones, Boston: Academic Press, 1988.
G. S. Guseinov, “Integration on time scales”, J. Math. Anal. Appl., vol. 285, no.1, pp. 107–127, 2003.
M. Khuddush, K. R. Prasad and K. V. Vidyasagar, “Infinitely many positive solutions for an iterative system of singular multipoint boundary value problems on time scales”, Rend. Circ. Mat. Palermo, ll Ser., 2021. doi: 10.1007/s12215-021-00650-6
C. Kunkel, “Positive solutions to singular second-order boundary value problems on time scales”, Adv. Dyn. Syst. Appl., vol. 4, no. 2, pp. 201–211, 2019.
S. Liang and J. Zhang, “The existence of countably many positive solutions for nonlinear singular m-point boundary value problems on time scales”, J. Comput. Appl. Math., vol. 223, no. 1, pp. 291–303, 2009.
U. M. Özkan, M. Z. Sarikaya and H. Yildirim, “Extensions of certain integral inequalities on time scales”, Appl. Math. Lett., vol. 21, no. 10, pp. 993–1000, 2008.
K. R. Prasad and M. Khuddush, “Countably infinitely many positive solutions for even order boundary value problems with Sturm-Liouville type integral boundary conditions on time scales”, Int. J. Anal. Appl., vol. 15, no. 2, pp. 198–210, 2017.
K. R. Prasad and M. Khuddush, “Existence of countably many symmetric positive solutions for system of even order time scale boundary value problems in Banach spaces”, Creat. Math. Inform., vol. 28, no. 2, pp. 163–182, 2019.
K. R. Prasad, M. Khuddush and K. V. Vidyasagar, “Denumerably many positive solutions for iterative systems of singular two-point boundary value problems on time scales”, Int. J. Difference Equ., vol. 15, no. 1, pp. 153–172, 2020.
S. Tikare and C. C. Tisdell, “Nonlinear dynamic equations on time scales with impulses and nonlocal conditions”, J. Class. Anal., vol. 16, no. 2, pp. 125–140, 2020.
P. A. Williams, “Unifying fractional calculus with time scales”, Ph.D. thesis, University of Melbourne, Melbourne, Australia, 2012.
Similar Articles
- Mouffak Benchohra, Naima Hamidi, Fractional Order Differential Inclusions via the Topological Transversality Method , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Fatima Fennour, Soumia Saïdi, On a class of evolution problems driven by maximal monotone operators with integral perturbation , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Vikram Singh, Dwijendra N Pandey, Weighted pseudo Almost periodic solutions for fractional order stochastic impulsive differential equations , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Surendra Kumar, The Solvability and Fractional Optimal Control for Semilinear Stochastic Systems , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Gian-Italo Bischi, Michael Kopel, Long Run Evolution, Path Dependence and Global Properties of Dynamic Games: A Tutorial , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Mircea Balaj, Donal O‘Regan, An Intersection Theorem and its Applications , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Qikeng Lu, Global Solutions of Yang-Mills Equation , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Kazuo Nishimura, John Stachurski, Discrete Time Models in Economic Theory , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- H. O. Fattorini, Regular and Strongly Regular Time and Norm Optimal Controls , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- E. A. Grove, E. Lapierre, W. Tikjha, On the global behavior of ð‘¥áµ¤â‚Šâ‚ = |ð‘¥áµ¤|− ð‘¦áµ¤ − 1 and ð‘¦áµ¤â‚Šâ‚ = ð‘¥áµ¤ +|ð‘¦áµ¤| , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
<< < 5 6 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.











