Infinitely many positive solutions for an iterative system of singular BVP on time scales
-
K. Rajendra Prasad
rajendra92@rediffmail.com
-
Mahammad Khuddush
khuddush89@gmail.com
-
K. V. Vidyasagar
vidyavijaya08@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462022000100021Abstract
In this paper, we consider an iterative system of singular two-point boundary value problems on time scales. By applying Hölder‘s inequality and Krasnoselskii‘s cone fixed point theorem in a Banach space, we derive sufficient conditions for the existence of infinitely many positive solutions. Finally, we provide an example to check the validity of our obtained results.
Keywords
R. P. Agarwal and M. Bohner, “Basic calculus on time scales and some of its applications”, Results Math., vol. 35, no. 1–2, pp. 3–22, 1999.
R. P. Agarwal, M. Bohner, D. O‘Regan and A. Peterson, “Dynamic equations on time scales: a survey”, J. Comput. Appl. Math., vol. 141, no. 1-2, pp. 1–26, 2002.
R. P. Agarwal, V. Otero-Espinar, K. Perera and D. R. Vivero, “Basic properties of Sobolev‘s spaces on time scales”, Adv. Difference. Equ., Art. ID 38121, 14 pages, 2006.
G. A. Anastassiou, Intelligent mathematics: computational analysis, Intelligent Systems Reference Library, vol. 5, Heidelberg: Springer, 2011.
M. Bohner and H. Luo, “Singular second-order multipoint dynamic boundary value problems with mixed derivatives”, Adv. Difference Equ., Art. ID 54989, 15 pages, 2006.
M. Bohner and A. Peterson, Dynamic equations on time scales: An introduction with applications, Boston: Birkh ̈auser Boston, Inc., 2001.
M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Boston: Birkhäuser Boston, Inc., 2003.
A. Dogan, “Positive solutions of the p-Laplacian dynamic equations on time scales with sign changing nonlinearity”, Electron. J. Differential Equations, Paper No. 39, 17 pages, 2018.
A. Dogan, “Positive solutions of a three-point boundary-value problem for p-Laplacian dynamic equation on time scales”.‘ Ukraïn. Mat. Zh., vol. 72, no. 6, pp. 790–805, 2020.
D. Guo and V. Lakshmikantham, Nonlinear problems in abstract cones, Boston: Academic Press, 1988.
G. S. Guseinov, “Integration on time scales”, J. Math. Anal. Appl., vol. 285, no.1, pp. 107–127, 2003.
M. Khuddush, K. R. Prasad and K. V. Vidyasagar, “Infinitely many positive solutions for an iterative system of singular multipoint boundary value problems on time scales”, Rend. Circ. Mat. Palermo, ll Ser., 2021. doi: 10.1007/s12215-021-00650-6
C. Kunkel, “Positive solutions to singular second-order boundary value problems on time scales”, Adv. Dyn. Syst. Appl., vol. 4, no. 2, pp. 201–211, 2019.
S. Liang and J. Zhang, “The existence of countably many positive solutions for nonlinear singular m-point boundary value problems on time scales”, J. Comput. Appl. Math., vol. 223, no. 1, pp. 291–303, 2009.
U. M. Özkan, M. Z. Sarikaya and H. Yildirim, “Extensions of certain integral inequalities on time scales”, Appl. Math. Lett., vol. 21, no. 10, pp. 993–1000, 2008.
K. R. Prasad and M. Khuddush, “Countably infinitely many positive solutions for even order boundary value problems with Sturm-Liouville type integral boundary conditions on time scales”, Int. J. Anal. Appl., vol. 15, no. 2, pp. 198–210, 2017.
K. R. Prasad and M. Khuddush, “Existence of countably many symmetric positive solutions for system of even order time scale boundary value problems in Banach spaces”, Creat. Math. Inform., vol. 28, no. 2, pp. 163–182, 2019.
K. R. Prasad, M. Khuddush and K. V. Vidyasagar, “Denumerably many positive solutions for iterative systems of singular two-point boundary value problems on time scales”, Int. J. Difference Equ., vol. 15, no. 1, pp. 153–172, 2020.
S. Tikare and C. C. Tisdell, “Nonlinear dynamic equations on time scales with impulses and nonlocal conditions”, J. Class. Anal., vol. 16, no. 2, pp. 125–140, 2020.
P. A. Williams, “Unifying fractional calculus with time scales”, Ph.D. thesis, University of Melbourne, Melbourne, Australia, 2012.
Similar Articles
- Muhammad Aslam Noor, Khalida Inayat Noor, Proximal-Resolvent Methods for Mixed Variational Inequalities , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Abdelouaheb Ardjouni, Ahcene Djoudi, Study of global asymptotic stability in nonlinear neutral dynamic equations on time scales , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Man Chun Leung, Concentration of solutions of non-linear elliptic equations involving critical Sobolev exponent , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Sehie Park, Remarks on KKM Maps and Fixed Point Theorems in Generalized Convex Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Moussa Barro, Aboudramane Guiro, Dramane Ouedraogo, Optimal control of a SIR epidemic model with general incidence function and a time delays , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- John A.D. Appleby, James P. Gleeson, Alexandra Rodkina, Asymptotic Constancy and Stability in Nonautonomous Stochastic Differential Equations , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Liancheng Wang, Bo Yang, New upper estimate for positive solutions to a second order boundary value problem with a parameter , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.











