On an \(a\) \(priori\) \(L^\infty\) estimate for a class of Monge-Ampère type equations on compact almost Hermitian manifolds
-
Masaya Kawamura
kawamura-m@t.kagawa-nct.ac.jp
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2402.0239Abstract
We investigate Monge-Ampère type equations on almost Hermitian manifolds and show an \(a\) \(priori\) \(L^\infty\) estimate for a smooth solution of these equations.
Keywords
L. Chen, “Hessian equations of Krylov type on Kähler manifolds”, preprint, arXiv:2107.12035v3, 2021.
J. Chu, V. Tosatti and B. Weinkove, “The Monge-Ampère equation for non-integrable almost complex structures”, J. Eur. Math. Soc., vol. 21, no. 7, pp. 1949–1984, 2019.
P. Gauduchon, “Le théorème de l‘excentricité nulle”, C. R. Acad. Sci. Paris S Ìer. A-B, vol. 285, no. 5, pp. A387–A390, 1977.
A. Newlander and L. Nirenberg, “Complex analytic coordinates in almost complex manifolds”, Ann. of Math. (2), vol. 65, pp. 391–404, 1957.
W. Sun, “On a class of fully nonlinear elliptic equations on closed Hermitian manifolds”, J. Geom. Anal., vol. 26, no. 3, pp. 2459–2473, 2016.
W. Sun, “On a class of fully nonlinear elliptic equations on closed Hermitian manifolds II: L∞ estimate”, Comm. Pure Appl. Math., vol. 70, no. 1, pp. 172–199, 2017.
V. Tosatti and B. Weinkove, “Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds”, Asian J. Math., vol. 14, pp. 19–40, 2010.
V. Tosatti and B. Weinkove, “The complex Monge-Ampère equation on compact Hermitian manifolds”, J. Amer. Math. Soc., vol. 23, pp. 1187–1195, 2010.
Q. Tu and N. Xiang, “The Dirichlet problem for mixed Hessian equations on Hermitian manifolds”, preprint, arXiv:2201.05030v1, 2022.
L. Vezzoni, “On Hermitian curvature flow on almost complex manifolds”, Differential Geom. Appl., vol. 29, no. 5, pp. 709–722, 2011.
C.-J. Yu, “Nonpositively curved almost Hermitian metrics on products of compact almost complex manifolds”, Acta Math. Sin., vol. 31, no. 1, pp. 61–70, 2015.
J. Zhang, “Monge-Ampère type equations on almost Hermitian manifolds”, preprint, arXiv:2101.00380, 2022.
T. Zheng, “An almost complex Chern-Ricci flow”, J. Geom. Anal., vol. 28, no. 3, pp. 2129– 2165, 2018.
Most read articles by the same author(s)
- Masaya Kawamura, On the conformally \(k\)-th Gauduchon condition and the conformally semi-Kähler condition on almost complex manifolds , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
Similar Articles
- Toka Diagana, Ahmed Mohamed, Pseudo-almost automorphic solutions to some second-order differential equations , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Toka Diagana, Existence of pseudo almost automorphic solutions to a nonautonomous heat equation , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Abdelouaheb Ardjouni, Ahcene Djoudi, Study of global asymptotic stability in nonlinear neutral dynamic equations on time scales , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Daniel J. Curtin, The Solution of the Cubic Equation: Renaissance Genius and Strife , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Chengjun Guo, Donal O‘Regan, Ravi P. Agarwal, Existence of Periodic Solutions for a Class of Second-Order Neutral Differential Equations with Multiple Deviating Arguments , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- George A. Anastassiou, Poincar´e Type Inequalities for Linear Differential Operators , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- George A. Anastassiou, Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- J. Blot, D. Pennequin, Gaston M. N‘Gu´er´ekata, Existence and Uniqueness of Pseudo Almost Automorphic Solutions to Some Classes of Partial Evolution Equations , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- F. Cardoso, G. Vodev, Semi-Classical Dispersive Estimates for the Wave and Schr¨odinger Equations with a Potential in Dimensions 𓃠≥ 4 , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Spencer Bloch, Helene Esnault, Congruences for the Number of Rational Points, Hodge Type and Motivic Conjectures for Fano Varieties , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
<< < 4 5 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.











