Existence results for a class of local and nonlocal nonlinear elliptic problems
-
Said Ait Temghart
saidotmghart@gmail.com
-
Chakir Allalou
chakir.allalou@yahoo.fr
-
Adil Abbassi
abbassi91@yahoo.fr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2501.001Abstract
In this paper, we study the \(p\)-Laplacian problems in the case where \(p\) depends on the solution itself. We consider two situations, when \(p\) is a local and nonlocal quantity. By using a singular perturbation technique, we prove the existence of weak solutions for the problem associated to the following equation
\[\begin{cases}-\mathrm{d}\mathrm{i}\mathrm{v}(|\nabla u|^{p(u)-2}\nabla u)+|u|^{p(u)-2}u=f&\mbox{in}\; \Omega\\u=0& \mbox{on}\; \partial\Omega,\end{cases}\]
and also for its nonlocal version. The main goal of this paper is to extend the results established by M. Chipot and H. B. de Oliveira (Math. Ann., 2019, 375, 283-306).
Keywords
Mathematics Subject Classification:
A. Abbassi, C. Allalou and A. Kassidi, “Topological degree methods for a Neumann problem governed by nonlinear elliptic equation”, Moroccan J. Pure and Appl. Anal., vol. 6, no. 2, pp. 231–242, 2020.
C. Allalou, K. Hilal and S. A. Temghart, “Existence of weak solutions for some local and nonlocal p-Laplacian problem”, J. Elliptic Parabol. Equ., vol. 8, no. 1, pp. 151–169, 2022.
B. Andreianov, M. Bendahmane and S. Ouaro, “Structural stability for variable exponent elliptic problems. II. The p(u)-Laplacian and coupled problems”, Nonlinear Anal., vol. 72, no. 12, pp. 4649–4660, 2010.
L. Barbu and G. Moroşanu, “Full description of the eigenvalue set of the Steklov (p,q)- Laplacian”, J. Differential Equations, vol. 290, pp. 1–16, 2021.
P. Blomgren, T. F. Chan, P. Mulet and C. K. Wong, “Total variation image restoration: Numerical methods and extensions”, in Proceedings of the IEEE International Conference on Image Processing, 1997, vol. 3, Piscataway, pp. 384–387.
E. Bollt, R. Chartrand, S. Esedoglu, P. Schultz and K. R. Vixie, “Graduated, adaptive image denoising: local compromise between total-variation and isotropic diffusion”, Adv. Comput. Math., vol. 31, no. 1–3, pp. 61–85, 2007.
M. Chipot and H. B. de Oliveira, “Some results on the p(u)-Laplacian problem”, vol. 375, no. 1–2, Math. Ann., pp. 283–306, 2019.
M. Chipot, Elliptic equations: an introductory course, Basel: Birkhäuser, 2009.
D. E. Edmunds, J. Lang and O. Mendez, Differential operators on spaces of variable integrability, New Jersey: World Scientific, 2014.
X. Fan, Q. Zhang and D. Zhao, “Eigenvalues of p(x)-Laplacian Dirichlet problem”, J. Math. Anal Appl., vol. 302, no. 2, pp. 306–317, 2005.
X. L. Fan and D. Zhao, “On the generalized Orlicz-Sobolev space W`^k,p(x) (Ω)”, J. Gansu Educ. College, no. 1, pp. 1–6, 1998.
R. Glowinski and R. Marrocco, “Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualit´é, d’une classe de probl`emes de Dirichlet non linéaires”, Rev. Franc ̧aise Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Num ́er, vol. 9, no. R–2, pp. 41–76, 1975.
O. Kováˇcik and J. Rákosník, “On spaces L^p(x)(Ω) and W^k,p(x)(Ω)”, Czechoslovak Math. J., vol. 41, no. 4, pp. 592–618, 1991.
S. Ouaro and N. Sawadogo, “Nonlinear elliptic p(u)-Laplacian problem with Fourier boundary condition”, Cubo, vol. 22, no. 1, pp. 85–124, 2020.
S. Ouaro and N. Sawadogo, “Structural stability for nonlinear p(u)-Laplacian problem with Fourier boundary condition”, Gulf J. Math., vol. 11, no. 1, pp. 1–37, 2021.
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovˇs, Nonlinear analysis—theory and methods, Springer Monographs in Mathematics, Cham: Springer, 2019.
J. Türola, “Image denoising using directional adaptive variable exponents model”, J. Math. Imaging Vision, vol. 57, no. 1, pp. 56–74, 2017.
V. V. E. Zhikov, “On the technique for passing to the limit in nonlinear elliptic equations”, Funct. Anal. Appl., vol. 43, no. 2, pp. 96–112, 2009.
Most read articles by the same author(s)
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
Similar Articles
- Meriem Djibaoui, Toufik Moussaoui, Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Svetlin Georgiev, Mohamed Majdoub, Two nonnegative solutions for two-dimensional nonlinear wave equations , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Buddhadev Pal, Santosh Kumar, Pankaj Kumar, Einstein warped product spaces on Lie groups , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Filippo Cammaroto, Infinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operator , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- René Erlín Castillo, Babar Sultan, A derivative-type operator and its application to the solvability of a nonlinear three point boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Ganga Ram Gautam, Sandra Pinelas, Manoj Kumar, Namrata Arya, Jaimala Bishnoi, On the solution of \(\mathcal{T}-\)controllable abstract fractional differential equations with impulsive effects , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Dmitri V. Alekseevsky, Masoud Ganji, Gerd Schmalz, Andrea Spiro, The Levi-Civita connections of Lorentzian manifolds with prescribed optical geometries , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Andrew Craig, Miroslav Haviar, Klarise Marais, Dual digraphs of finite meet-distributive and modular lattices , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
<< < 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 S. A. Temghart et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.