Existence results for a class of local and nonlocal nonlinear elliptic problems
-
Said Ait Temghart
saidotmghart@gmail.com
-
Chakir Allalou
chakir.allalou@yahoo.fr
-
Adil Abbassi
abbassi91@yahoo.fr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2501.001Abstract
In this paper, we study the \(p\)-Laplacian problems in the case where \(p\) depends on the solution itself. We consider two situations, when \(p\) is a local and nonlocal quantity. By using a singular perturbation technique, we prove the existence of weak solutions for the problem associated to the following equation
\[\begin{cases}-\mathrm{d}\mathrm{i}\mathrm{v}(|\nabla u|^{p(u)-2}\nabla u)+|u|^{p(u)-2}u=f&\mbox{in}\; \Omega\\u=0& \mbox{on}\; \partial\Omega,\end{cases}\]
and also for its nonlocal version. The main goal of this paper is to extend the results established by M. Chipot and H. B. de Oliveira (Math. Ann., 2019, 375, 283-306).
Keywords
Mathematics Subject Classification:
A. Abbassi, C. Allalou and A. Kassidi, “Topological degree methods for a Neumann problem governed by nonlinear elliptic equation”, Moroccan J. Pure and Appl. Anal., vol. 6, no. 2, pp. 231–242, 2020.
C. Allalou, K. Hilal and S. A. Temghart, “Existence of weak solutions for some local and nonlocal p-Laplacian problem”, J. Elliptic Parabol. Equ., vol. 8, no. 1, pp. 151–169, 2022.
B. Andreianov, M. Bendahmane and S. Ouaro, “Structural stability for variable exponent elliptic problems. II. The p(u)-Laplacian and coupled problems”, Nonlinear Anal., vol. 72, no. 12, pp. 4649–4660, 2010.
L. Barbu and G. Moroşanu, “Full description of the eigenvalue set of the Steklov (p,q)- Laplacian”, J. Differential Equations, vol. 290, pp. 1–16, 2021.
P. Blomgren, T. F. Chan, P. Mulet and C. K. Wong, “Total variation image restoration: Numerical methods and extensions”, in Proceedings of the IEEE International Conference on Image Processing, 1997, vol. 3, Piscataway, pp. 384–387.
E. Bollt, R. Chartrand, S. Esedoglu, P. Schultz and K. R. Vixie, “Graduated, adaptive image denoising: local compromise between total-variation and isotropic diffusion”, Adv. Comput. Math., vol. 31, no. 1–3, pp. 61–85, 2007.
M. Chipot and H. B. de Oliveira, “Some results on the p(u)-Laplacian problem”, vol. 375, no. 1–2, Math. Ann., pp. 283–306, 2019.
M. Chipot, Elliptic equations: an introductory course, Basel: Birkhäuser, 2009.
D. E. Edmunds, J. Lang and O. Mendez, Differential operators on spaces of variable integrability, New Jersey: World Scientific, 2014.
X. Fan, Q. Zhang and D. Zhao, “Eigenvalues of p(x)-Laplacian Dirichlet problem”, J. Math. Anal Appl., vol. 302, no. 2, pp. 306–317, 2005.
X. L. Fan and D. Zhao, “On the generalized Orlicz-Sobolev space W`^k,p(x) (Ω)”, J. Gansu Educ. College, no. 1, pp. 1–6, 1998.
R. Glowinski and R. Marrocco, “Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualit´é, d’une classe de probl`emes de Dirichlet non linéaires”, Rev. Franc ̧aise Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Num ́er, vol. 9, no. R–2, pp. 41–76, 1975.
O. Kováˇcik and J. Rákosník, “On spaces L^p(x)(Ω) and W^k,p(x)(Ω)”, Czechoslovak Math. J., vol. 41, no. 4, pp. 592–618, 1991.
S. Ouaro and N. Sawadogo, “Nonlinear elliptic p(u)-Laplacian problem with Fourier boundary condition”, Cubo, vol. 22, no. 1, pp. 85–124, 2020.
S. Ouaro and N. Sawadogo, “Structural stability for nonlinear p(u)-Laplacian problem with Fourier boundary condition”, Gulf J. Math., vol. 11, no. 1, pp. 1–37, 2021.
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovˇs, Nonlinear analysis—theory and methods, Springer Monographs in Mathematics, Cham: Springer, 2019.
J. Türola, “Image denoising using directional adaptive variable exponents model”, J. Math. Imaging Vision, vol. 57, no. 1, pp. 56–74, 2017.
V. V. E. Zhikov, “On the technique for passing to the limit in nonlinear elliptic equations”, Funct. Anal. Appl., vol. 43, no. 2, pp. 96–112, 2009.
Most read articles by the same author(s)
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
Similar Articles
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: In Press
- Vicente Muñoz, Leray-Serre Spectral Sequence for Quasi-Fibrations , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- H. M. Srivastava, Fractional calculus and its applications , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- André Nachbin, Some Mathematical Models for Wave Propagation , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Derek Hacon, Jordan normal form via ODE's , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- P. Jeyanthi, P. Nalayini, T. Noiri, Pre-regular \(sp\)-open sets in topological spaces , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Sushanta Kumar Mohanta, Common Fixed Point Results in C∗-Algebra Valued b-Metric Spaces Via Digraphs , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Youssef N. Raffoul, Ernest Yankson, Positive periodic solutions of functional discrete systems with a parameter , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
<< < 12 13 14 15 16 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 S. A. Temghart et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.