Existence results for a class of local and nonlocal nonlinear elliptic problems
-
Said Ait Temghart
saidotmghart@gmail.com
-
Chakir Allalou
chakir.allalou@yahoo.fr
-
Adil Abbassi
abbassi91@yahoo.fr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2501.001Abstract
In this paper, we study the \(p\)-Laplacian problems in the case where \(p\) depends on the solution itself. We consider two situations, when \(p\) is a local and nonlocal quantity. By using a singular perturbation technique, we prove the existence of weak solutions for the problem associated to the following equation
\[\begin{cases}-\mathrm{d}\mathrm{i}\mathrm{v}(|\nabla u|^{p(u)-2}\nabla u)+|u|^{p(u)-2}u=f&\mbox{in}\; \Omega\\u=0& \mbox{on}\; \partial\Omega,\end{cases}\]
and also for its nonlocal version. The main goal of this paper is to extend the results established by M. Chipot and H. B. de Oliveira (Math. Ann., 2019, 375, 283-306).
Keywords
Mathematics Subject Classification:
A. Abbassi, C. Allalou and A. Kassidi, “Topological degree methods for a Neumann problem governed by nonlinear elliptic equation”, Moroccan J. Pure and Appl. Anal., vol. 6, no. 2, pp. 231–242, 2020.
C. Allalou, K. Hilal and S. A. Temghart, “Existence of weak solutions for some local and nonlocal p-Laplacian problem”, J. Elliptic Parabol. Equ., vol. 8, no. 1, pp. 151–169, 2022.
B. Andreianov, M. Bendahmane and S. Ouaro, “Structural stability for variable exponent elliptic problems. II. The p(u)-Laplacian and coupled problems”, Nonlinear Anal., vol. 72, no. 12, pp. 4649–4660, 2010.
L. Barbu and G. Moroşanu, “Full description of the eigenvalue set of the Steklov (p,q)- Laplacian”, J. Differential Equations, vol. 290, pp. 1–16, 2021.
P. Blomgren, T. F. Chan, P. Mulet and C. K. Wong, “Total variation image restoration: Numerical methods and extensions”, in Proceedings of the IEEE International Conference on Image Processing, 1997, vol. 3, Piscataway, pp. 384–387.
E. Bollt, R. Chartrand, S. Esedoglu, P. Schultz and K. R. Vixie, “Graduated, adaptive image denoising: local compromise between total-variation and isotropic diffusion”, Adv. Comput. Math., vol. 31, no. 1–3, pp. 61–85, 2007.
M. Chipot and H. B. de Oliveira, “Some results on the p(u)-Laplacian problem”, vol. 375, no. 1–2, Math. Ann., pp. 283–306, 2019.
M. Chipot, Elliptic equations: an introductory course, Basel: Birkhäuser, 2009.
D. E. Edmunds, J. Lang and O. Mendez, Differential operators on spaces of variable integrability, New Jersey: World Scientific, 2014.
X. Fan, Q. Zhang and D. Zhao, “Eigenvalues of p(x)-Laplacian Dirichlet problem”, J. Math. Anal Appl., vol. 302, no. 2, pp. 306–317, 2005.
X. L. Fan and D. Zhao, “On the generalized Orlicz-Sobolev space W`^k,p(x) (Ω)”, J. Gansu Educ. College, no. 1, pp. 1–6, 1998.
R. Glowinski and R. Marrocco, “Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualit´é, d’une classe de probl`emes de Dirichlet non linéaires”, Rev. Franc ̧aise Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Num ́er, vol. 9, no. R–2, pp. 41–76, 1975.
O. Kováˇcik and J. Rákosník, “On spaces L^p(x)(Ω) and W^k,p(x)(Ω)”, Czechoslovak Math. J., vol. 41, no. 4, pp. 592–618, 1991.
S. Ouaro and N. Sawadogo, “Nonlinear elliptic p(u)-Laplacian problem with Fourier boundary condition”, Cubo, vol. 22, no. 1, pp. 85–124, 2020.
S. Ouaro and N. Sawadogo, “Structural stability for nonlinear p(u)-Laplacian problem with Fourier boundary condition”, Gulf J. Math., vol. 11, no. 1, pp. 1–37, 2021.
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovˇs, Nonlinear analysis—theory and methods, Springer Monographs in Mathematics, Cham: Springer, 2019.
J. Türola, “Image denoising using directional adaptive variable exponents model”, J. Math. Imaging Vision, vol. 57, no. 1, pp. 56–74, 2017.
V. V. E. Zhikov, “On the technique for passing to the limit in nonlinear elliptic equations”, Funct. Anal. Appl., vol. 43, no. 2, pp. 96–112, 2009.
Most read articles by the same author(s)
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
Similar Articles
- Ernest Yankson, Inequalities and sufficient conditions for exponential stability and instability for nonlinear Volterra difference equations with variable delay , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- A. Leit˜ao, J.P. Zubelli, Iterative Regularization Methods for a Discrete Inverse Problem in MRI , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Martin Moskowitz, Symmetric Spaces of Noncompact type , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Abdelhamid Bensalem, Abdelkrim Salim, Bashir Ahmad, Mouffak Benchohra, Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fréchet spaces , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Binayak Choudhury, Subhajit Kundu, Approximating a solution of an equilibrium problem by Viscosity iteration involving a nonexpansive semigroup , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- P. G. Patil, T. D. Rayanagoudar, S. S. Benchalli, Generalization of new continuous functions in Topological spaces , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: In Press
- Denis L. Blackmore, Yarema A. Prykarpatsky, Anatoliy M. Samoilenko, Anatoliy K. Prykarpatsky, The ergodic measures related with nonautonomous hamiltonian systems and their homology structure. Part 1 , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Nguyen Buong, Convergence rates in regularization for ill-posed variational inequalities , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- E. N. Mahmudov, G. C¸i¸cek, Optimization of differential inclusions of Bolza type with state constraints and duality , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
<< < 7 8 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 S. A. Temghart et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.