Existence results for a class of local and nonlocal nonlinear elliptic problems
-
Said Ait Temghart
saidotmghart@gmail.com
-
Chakir Allalou
chakir.allalou@yahoo.fr
-
Adil Abbassi
abbassi91@yahoo.fr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2501.001Abstract
In this paper, we study the \(p\)-Laplacian problems in the case where \(p\) depends on the solution itself. We consider two situations, when \(p\) is a local and nonlocal quantity. By using a singular perturbation technique, we prove the existence of weak solutions for the problem associated to the following equation
\[\begin{cases}-\mathrm{d}\mathrm{i}\mathrm{v}(|\nabla u|^{p(u)-2}\nabla u)+|u|^{p(u)-2}u=f&\mbox{in}\; \Omega\\u=0& \mbox{on}\; \partial\Omega,\end{cases}\]
and also for its nonlocal version. The main goal of this paper is to extend the results established by M. Chipot and H. B. de Oliveira (Math. Ann., 2019, 375, 283-306).
Keywords
Mathematics Subject Classification:
A. Abbassi, C. Allalou and A. Kassidi, “Topological degree methods for a Neumann problem governed by nonlinear elliptic equation”, Moroccan J. Pure and Appl. Anal., vol. 6, no. 2, pp. 231–242, 2020.
C. Allalou, K. Hilal and S. A. Temghart, “Existence of weak solutions for some local and nonlocal p-Laplacian problem”, J. Elliptic Parabol. Equ., vol. 8, no. 1, pp. 151–169, 2022.
B. Andreianov, M. Bendahmane and S. Ouaro, “Structural stability for variable exponent elliptic problems. II. The p(u)-Laplacian and coupled problems”, Nonlinear Anal., vol. 72, no. 12, pp. 4649–4660, 2010.
L. Barbu and G. Moroşanu, “Full description of the eigenvalue set of the Steklov (p,q)- Laplacian”, J. Differential Equations, vol. 290, pp. 1–16, 2021.
P. Blomgren, T. F. Chan, P. Mulet and C. K. Wong, “Total variation image restoration: Numerical methods and extensions”, in Proceedings of the IEEE International Conference on Image Processing, 1997, vol. 3, Piscataway, pp. 384–387.
E. Bollt, R. Chartrand, S. Esedoglu, P. Schultz and K. R. Vixie, “Graduated, adaptive image denoising: local compromise between total-variation and isotropic diffusion”, Adv. Comput. Math., vol. 31, no. 1–3, pp. 61–85, 2007.
M. Chipot and H. B. de Oliveira, “Some results on the p(u)-Laplacian problem”, vol. 375, no. 1–2, Math. Ann., pp. 283–306, 2019.
M. Chipot, Elliptic equations: an introductory course, Basel: Birkhäuser, 2009.
D. E. Edmunds, J. Lang and O. Mendez, Differential operators on spaces of variable integrability, New Jersey: World Scientific, 2014.
X. Fan, Q. Zhang and D. Zhao, “Eigenvalues of p(x)-Laplacian Dirichlet problem”, J. Math. Anal Appl., vol. 302, no. 2, pp. 306–317, 2005.
X. L. Fan and D. Zhao, “On the generalized Orlicz-Sobolev space W`^k,p(x) (Ω)”, J. Gansu Educ. College, no. 1, pp. 1–6, 1998.
R. Glowinski and R. Marrocco, “Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualit´é, d’une classe de probl`emes de Dirichlet non linéaires”, Rev. Franc ̧aise Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Num ́er, vol. 9, no. R–2, pp. 41–76, 1975.
O. Kováˇcik and J. Rákosník, “On spaces L^p(x)(Ω) and W^k,p(x)(Ω)”, Czechoslovak Math. J., vol. 41, no. 4, pp. 592–618, 1991.
S. Ouaro and N. Sawadogo, “Nonlinear elliptic p(u)-Laplacian problem with Fourier boundary condition”, Cubo, vol. 22, no. 1, pp. 85–124, 2020.
S. Ouaro and N. Sawadogo, “Structural stability for nonlinear p(u)-Laplacian problem with Fourier boundary condition”, Gulf J. Math., vol. 11, no. 1, pp. 1–37, 2021.
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovˇs, Nonlinear analysis—theory and methods, Springer Monographs in Mathematics, Cham: Springer, 2019.
J. Türola, “Image denoising using directional adaptive variable exponents model”, J. Math. Imaging Vision, vol. 57, no. 1, pp. 56–74, 2017.
V. V. E. Zhikov, “On the technique for passing to the limit in nonlinear elliptic equations”, Funct. Anal. Appl., vol. 43, no. 2, pp. 96–112, 2009.
Most read articles by the same author(s)
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
Similar Articles
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Youssef N. Raffoul, Ernest Yankson, Positive periodic solutions of functional discrete systems with a parameter , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Youssef N Raffoul, Stability and boundedness in nonlinear and neutral difference equations using new variation of parameters formula and fixed point theory , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Rodrigue Sanou, Idrissa Ibrango, Blaise Koné, Aboudramane Guiro, Weak solutions to Neumann discrete nonlinear system of Kirchhoff type , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Silvestru Sever Dragomir, Bounds for the generalized \( (\Phi;f) \)-mean difference , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Moussa Barro, Sado Traoré, Level sets regularization with application to optimization problems , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- M. Haviar, S. Kurtulík, A new class of graceful graphs: \(k\)-enriched fan graphs and their characterisations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- K. Rajendra Prasad, Mahammad Khuddush, K. V. Vidyasagar, Infinitely many positive solutions for an iterative system of singular BVP on time scales , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
<< < 14 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 S. A. Temghart et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.