Dirichlet series and series with Stirling numbers
-
Khristo Boyadzhiev
k-boyadzhiev@onu.edu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2501.103Abstract
This paper presents a number of identities for Dirichlet series and series with Stirling numbers of the first kind. As coefficients for the Dirichlet series we use Cauchy numbers of the first and second kinds, hyperharmonic numbers, derangement numbers, binomial coefficients, central binomial coefficients, and Catalan numbers.
Keywords
Mathematics Subject Classification:
V. Adamchik, “On Stirling numbers and Euler sums”, J. Comput. Appl. Math., vol. 79, no. 1, pp. 119–130, 1997.
K. N. Boyadzhiev, “Stirling numbers and inverse factorial series”, 2020, arXiv: 2012.14546v1.
K. N. Boyadzhiev, “New series identities with Cauchy, Stirling, and harmonic numbers, and Laguerre polynomials”, J. Integer Seq., vol. 23, no. 11, Art. 20.11.7, 2020.
K. N. Boyadzhiev, “Series with central binomial coefficients, Catalan Numbers, and harmonic numbers”, J. Integer Seq., vol. 15, no. 1, Article 12.1.7, 2012.
J. M Campbell, J. D’Aurizio and J. Sondow, “Hypergeometry of the parbelos”, Amer. Math. Montly, vol. 127, no. 1, pp. 23–32, 2020.
J. M. Campbell, J. D’Aurizio and J. Sondow, “On the interplay among hypergeometric functions, complete elliptic integrals and Fourier-Legendre series expansions”, J. Math. Anal. Appl., vol. 479, no. 1, pp. 90–121, 2019.
L. Comtet, Advanced Combinatorics, Dordrecht: D. Reidel Publishing Co., 1974.
J. H. Conway and R. Guy, The Book of Numbers, New York: Copernicus, 1996.
H. W. Gould and T. Shonhiwa, “A catalog of interesting Dirichlet series”, Missouri J. Math. Sci., vol. 20, no. 1, pp. 1–17, 2008.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, New York: Addison- Wesley Publishing Company, 1994.
G. H. Hardy and M. Riesz, The general theory of Dirichlet’s series, Cambridge: Cambridge University Press, 1915.
C. Jordan, Calculus of finite differences, New York: Chelsea Publishing Co., 1950.
D. H. Lehmer, “Interesting series involving the central binomial coefficient”, Amer. Math. Monthly, vol. 92, no. 7, pp. 449–457, 1985.
D. Merlini, R. Sprugnoli and M. C. Verri, “The Cauchy numbers”, Discrete Math., vol. 306, no. 16, pp. 1906–1920, 2006.
I. Tweddle, James Stirling’s methodus differentialis, New York: Springer, 2003.
W. Wang and Y. Chen, “Explicit formulas of sums involving harmonic numbers and Stirling numbers”, J. Difference Equ. Appl., vol. 26, no. 9–10, pp. 1369–1397, 2020.
W. Wang and C. Xu, “Alternating multiple zeta values, and explicit formulas of some Euler– Apéry–type series”, European J. Combin., vol. 93, Paper No. 103283, 25 pages, 2021.
Similar Articles
- Derek Hacon, Jordan normal form via ODE's , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Wolfgang Rump, Non-Commuting Numbers and Functions , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Francisco Brito, Many-Ended Complete Minimal Surfaces Between Two Parallel Planes in ℳ , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Rabha W. Ibrahim, Existence of deviating fractional differential equation , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Trueman MacHenry, From Fibonacci Numbers to Symmetric Functions , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Naoyuki Koike, Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Mohammadi El Hamdaoui, Abdelkarim Boua, Quotient rings satisfying some identities , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Pablo Marshall, Modelos estructurales para series cronológicas , CUBO, A Mathematical Journal: No. 7 (1991): CUBO, Revista de Matemática
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 K. Boyadzhiev

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.