Dirichlet series and series with Stirling numbers
-
Khristo Boyadzhiev
k-boyadzhiev@onu.edu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2501.103Abstract
This paper presents a number of identities for Dirichlet series and series with Stirling numbers of the first kind. As coefficients for the Dirichlet series we use Cauchy numbers of the first and second kinds, hyperharmonic numbers, derangement numbers, binomial coefficients, central binomial coefficients, and Catalan numbers.
Keywords
Mathematics Subject Classification:
V. Adamchik, “On Stirling numbers and Euler sums”, J. Comput. Appl. Math., vol. 79, no. 1, pp. 119–130, 1997.
K. N. Boyadzhiev, “Stirling numbers and inverse factorial series”, 2020, arXiv: 2012.14546v1.
K. N. Boyadzhiev, “New series identities with Cauchy, Stirling, and harmonic numbers, and Laguerre polynomials”, J. Integer Seq., vol. 23, no. 11, Art. 20.11.7, 2020.
K. N. Boyadzhiev, “Series with central binomial coefficients, Catalan Numbers, and harmonic numbers”, J. Integer Seq., vol. 15, no. 1, Article 12.1.7, 2012.
J. M Campbell, J. D’Aurizio and J. Sondow, “Hypergeometry of the parbelos”, Amer. Math. Montly, vol. 127, no. 1, pp. 23–32, 2020.
J. M. Campbell, J. D’Aurizio and J. Sondow, “On the interplay among hypergeometric functions, complete elliptic integrals and Fourier-Legendre series expansions”, J. Math. Anal. Appl., vol. 479, no. 1, pp. 90–121, 2019.
L. Comtet, Advanced Combinatorics, Dordrecht: D. Reidel Publishing Co., 1974.
J. H. Conway and R. Guy, The Book of Numbers, New York: Copernicus, 1996.
H. W. Gould and T. Shonhiwa, “A catalog of interesting Dirichlet series”, Missouri J. Math. Sci., vol. 20, no. 1, pp. 1–17, 2008.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, New York: Addison- Wesley Publishing Company, 1994.
G. H. Hardy and M. Riesz, The general theory of Dirichlet’s series, Cambridge: Cambridge University Press, 1915.
C. Jordan, Calculus of finite differences, New York: Chelsea Publishing Co., 1950.
D. H. Lehmer, “Interesting series involving the central binomial coefficient”, Amer. Math. Monthly, vol. 92, no. 7, pp. 449–457, 1985.
D. Merlini, R. Sprugnoli and M. C. Verri, “The Cauchy numbers”, Discrete Math., vol. 306, no. 16, pp. 1906–1920, 2006.
I. Tweddle, James Stirling’s methodus differentialis, New York: Springer, 2003.
W. Wang and Y. Chen, “Explicit formulas of sums involving harmonic numbers and Stirling numbers”, J. Difference Equ. Appl., vol. 26, no. 9–10, pp. 1369–1397, 2020.
W. Wang and C. Xu, “Alternating multiple zeta values, and explicit formulas of some Euler– Apéry–type series”, European J. Combin., vol. 93, Paper No. 103283, 25 pages, 2021.
Similar Articles
- Richard Delanghe, On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- A. El-Sayed Ahmed, A. Kamal, T.I. Yassen, Characterizations for certain analytic functions by series expansions with Hadamard gaps , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Miklos N. Szilagyi, N-Person Prisoners' Dilemmas , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Masaru Ikehata, A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- A. Rodkina, On Asymptotic Stability of Nonlinear Stochastic Systems with Delay , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Alina Sîntamarian, Euler's constant, new classes of sequences and estimates , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- S. S. Dragomir, M. V. Boldea, M. Megan, Inequalities for Chebyshev functional in Banach algebras , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Derek Hacon, Jordan normal form via ODE's , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Naoyuki Koike, Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- V. V. Palin, E. V. Radkevich, The Maxwell problem and the Chapman projection , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 K. Boyadzhiev

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.