Dirichlet series and series with Stirling numbers
-
Khristo Boyadzhiev
k-boyadzhiev@onu.edu
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2501.103Abstract
This paper presents a number of identities for Dirichlet series and series with Stirling numbers of the first kind. As coefficients for the Dirichlet series we use Cauchy numbers of the first and second kinds, hyperharmonic numbers, derangement numbers, binomial coefficients, central binomial coefficients, and Catalan numbers.
Keywords
Mathematics Subject Classification:
V. Adamchik, “On Stirling numbers and Euler sums”, J. Comput. Appl. Math., vol. 79, no. 1, pp. 119–130, 1997.
K. N. Boyadzhiev, “Stirling numbers and inverse factorial series”, 2020, arXiv: 2012.14546v1.
K. N. Boyadzhiev, “New series identities with Cauchy, Stirling, and harmonic numbers, and Laguerre polynomials”, J. Integer Seq., vol. 23, no. 11, Art. 20.11.7, 2020.
K. N. Boyadzhiev, “Series with central binomial coefficients, Catalan Numbers, and harmonic numbers”, J. Integer Seq., vol. 15, no. 1, Article 12.1.7, 2012.
J. M Campbell, J. D’Aurizio and J. Sondow, “Hypergeometry of the parbelos”, Amer. Math. Montly, vol. 127, no. 1, pp. 23–32, 2020.
J. M. Campbell, J. D’Aurizio and J. Sondow, “On the interplay among hypergeometric functions, complete elliptic integrals and Fourier-Legendre series expansions”, J. Math. Anal. Appl., vol. 479, no. 1, pp. 90–121, 2019.
L. Comtet, Advanced Combinatorics, Dordrecht: D. Reidel Publishing Co., 1974.
J. H. Conway and R. Guy, The Book of Numbers, New York: Copernicus, 1996.
H. W. Gould and T. Shonhiwa, “A catalog of interesting Dirichlet series”, Missouri J. Math. Sci., vol. 20, no. 1, pp. 1–17, 2008.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, New York: Addison- Wesley Publishing Company, 1994.
G. H. Hardy and M. Riesz, The general theory of Dirichlet’s series, Cambridge: Cambridge University Press, 1915.
C. Jordan, Calculus of finite differences, New York: Chelsea Publishing Co., 1950.
D. H. Lehmer, “Interesting series involving the central binomial coefficient”, Amer. Math. Monthly, vol. 92, no. 7, pp. 449–457, 1985.
D. Merlini, R. Sprugnoli and M. C. Verri, “The Cauchy numbers”, Discrete Math., vol. 306, no. 16, pp. 1906–1920, 2006.
I. Tweddle, James Stirling’s methodus differentialis, New York: Springer, 2003.
W. Wang and Y. Chen, “Explicit formulas of sums involving harmonic numbers and Stirling numbers”, J. Difference Equ. Appl., vol. 26, no. 9–10, pp. 1369–1397, 2020.
W. Wang and C. Xu, “Alternating multiple zeta values, and explicit formulas of some Euler– Apéry–type series”, European J. Combin., vol. 93, Paper No. 103283, 25 pages, 2021.
Similar Articles
- Vito Lampret, Estimating the remainder of an alternating \(p\)-series revisited , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- M.I. Belishev, Some remarks on the impedance tomography problem for 3d-manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- H. Özlem Güney, G. Murugusundaramoorthy, K. Vijaya, Subclasses of \(\lambda\)-bi-pseudo-starlike functions with respect to symmetric points based on shell-like curves , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Xu You, Approximation and inequalities for the factorial function related to the Burnside’s formula , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Roberto Rodríguez del Río, Enrique Zuazua, Series de Fourier y fenómeno de Gibbs , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- S. Albeverio, Ya. Belopolskaya, Generalized solutions of the Cauchy problem for the Navier-Stokes system and diffusion processes , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- D. Constales, R. De Almeida, R.S. Krausshar, A Generalization of Wiman and Valiron‘s theory to the Clifford analysis setting , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- F. Brackx, H. De Schepper, The Hilbert Transform on a Smooth Closed Hypersurface , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Fred Brackx, Hennie De Schepper, Frank Sommen, Liesbet Van de Voorde, Discrete Clifford analysis: an overview , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 K. Boyadzhiev

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.