A note on the structure of the zeros of a polynomial and Sendov's conjecture
-
G. M. Sofi
gmsofi@cukashmir.ac.in
-
W. M. Shah
wali@cukashmir.ac.in
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2503.515Abstract
In this note we prove a result that highlights an interesting connection between the structure of the zeros of a polynomial \(p(z)\) and Sendov's conjecture.
Keywords
Mathematics Subject Classification:
B. D. Bojanov, Q. I. Rahman, and J. Szynal, “On a conjecture of Sendov about the critical points of a polynomial,” Math. Z., vol. 190, no. 2, pp. 281–285, 1985, doi: 10.1007/BF01160464.
I. Borcea, “On the Sendov conjecture for polynomials with at most six distinct roots,” J. Math. Anal. Appl., vol. 200, no. 1, pp. 182–206, 1996, doi: 10.1006/jmaa.1996.0198.
J. E. Brown and G. Xiang, “Proof of the Sendov conjecture for polynomials of degree at most eight,” J. Math. Anal. Appl., vol. 232, no. 2, pp. 272–292, 1999, doi: 10.1006/jmaa.1999.6267.
T. P. Chalebgwa, “Sendov’s conjecture: a note on a paper of Dégot,” Anal. Math., vol. 46, no. 3, pp. 447–463, 2020, doi: 10.1007/s10476-020-0050-x.
J. Dégot, “Sendov conjecture for high degree polynomials,” Proc. Amer. Math. Soc., vol. 142, no. 4, pp. 1337–1349, 2014, doi: 10.1090/S0002-9939-2014-11888-0.
W. K. Hayman, Research problems in function theory. The Athlone Press [University of London], London, 1967.
P. Kumar, “A remark on Sendov conjecture,” C. R. Acad. Bulgare Sci., vol. 71, no. 6, pp. 731–734, 2018.
M. J. Miller, “Maximal polynomials and the Ilieff-Sendov conjecture,” Trans. Amer. Math. Soc., vol. 321, no. 1, pp. 285–303, 1990, doi: 10.2307/2001603.
Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, ser. London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, Oxford, 2002, vol. 26.
Z. Rubinstein, “On a problem of Ilyeff,” Pacific J. Math., vol. 26, pp. 159–161, 1968.
G. Schmeisser, “Bemerkungen zu einer Vermutung von Ilieff.” Math Z., vol. 111, pp. 121–125, 1969, doi: 10.1007/BF01111192.
G. Schmeisser, “Zur Lage der kritischen Punkte eines Polynoms,” Rendiconti del Seminario Matematico della Università di Padova, vol. 46, pp. 405–415, 1971.
G. M. Sofi and W. M. Shah, “On Sendov’s conjecture,” Rend. Circ. Mat. Palermo (2), vol. 72, no. 1, pp. 493–497, 2023, doi: 10.1007/s12215-021-00690-y.
G. M. Sofi, S. A. Ahanger, and R. B. Gardner, “Some classes of polynomials satisfying Sendov’s conjecture,” Studia Sci. Math. Hungar., vol. 57, no. 4, pp. 436–443, 2020, doi: 10.1556/012.2020.57.4.1475.
T. Tao, “Sendov’s conjecture for sufficiently-high-degree polynomials,” Acta Math., vol. 229, no. 2, pp. 347–392, 2022.
Similar Articles
- Robert M. Yamaleev, Evolutionary method of construction of solutions of polynomials and related generalized dynamics , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Boukhemis Ammar, On the classical 2−orthogonal polynomials sequences of Sheffer-Meixner type , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Ravi P. Agarwal, Michael E. Filippakis, Donal O‘Regan, Nikolaos S. Papageorgiou, Multiple Solutions for Doubly Resonant Elliptic Problems Using Critical Groups , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Bernard Helffer, Xing-Bin Pan, On Some Spectral Problems and Asymptotic Limits Occuring in the Analysis of Liquid Crystals , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Abhijit Banerjee, Arpita Kundu, On uniqueness of \(L\)-functions in terms of zeros of strong uniqueness polynomial , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Meriem Djibaoui, Toufik Moussaoui, Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Gradimir V. Milovanović, Abdullah Mir, Adil Hussain, Estimates for the polar derivative of a constrained polynomial on a disk , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Abdón Catalán, Roberto Costa, Acerca de álgebras báricas satisfaciendo \((x^2)^2 = w(x)^3x *\) , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
- Pierpaolo Natalini, Paolo Emilio Ricci, Bell Polynomials and some of their Applications , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Hiroko Manaka, Wataru Takahashi, Weak convergence theorems for maximal monotone operators with nonspreading mappings in a Hilbert space , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 G. M. Sofi et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.