Double asymptotic inequalities for the generalized Wallis ratio
-
Vito Lampret
vito.lampret@guest.arnes.si
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.021Abstract
Asymptotic estimates for the generalized Wallis ratio \(W^*(x):=\frac{1}{\sqrt{\pi}}\cdot\frac{\Gamma(x+\frac{1}{2})}{\Gamma(x+1)}\) are presented for \(x\in\mathbb{R}^+\) on the basis of Stirling's approximation formula for the \(\Gamma\) function. For example, for an integer \(p\ge2\) and a real \(x>-\tfrac{1}{2}\) we have the following double asymptotic inequality
\[
A(p,x)\,<\,W^*(x)\,<\,B(p,x),
\]
where
\begin{align*}
A(p,x):=&
W_p(x)\left(1-\tfrac{1}{8(x+p)}+\tfrac{1}{128(x+p)^2}+\tfrac{1}{379(x+p)^3}\right), \\
B(p,x):= &
W_p(x)\left(1-\tfrac{1}{8(x+p)}+\tfrac{1}{128(x+p)^2}+\tfrac{1}{191(x+p)^3}\right),\\
W_p(x):=&
\frac{1}{\sqrt{\pi\,(x+p)}}\cdot\frac{(x+1)^{(p)}}{(x+\frac{1}{2})^{(p)}},
\end{align*}
with \(y^{(p)}\equiv y(y+1)\cdots(y+p-1)\), the Pochhammer rising
(upper) factorial of order \(p\).
Keywords
Mathematics Subject Classification:
M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, ser. National Bureau of Standards Applied Mathematics Series. U. S. Government Printing Office, Washington, DC, 1964, vol. 55.
T. Burić and N. Elezović, “Bernoulli polynomials and asymptotic expansions of the quotient of gamma functions,” J. Comput. Appl. Math., vol. 235, no. 11, pp. 3315–3331, 2011, doi: 10.1016/j.cam.2011.01.045.
T. Burić and N. Elezović, “New asymptotic expansions of the quotient of gamma functions,” Integral Transforms Spec. Funct., vol. 23, no. 5, pp. 355–368, 2012, doi: 10.1080/10652469.2011.591393.
C.-P. Chen and R. B. Paris, “Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function,” Appl. Math. Comput., vol. 250, pp. 514–529, 2015, doi: 10.1016/j.amc.2014.11.010.
V. G. Cristea, “A direct approach for proving Wallis ratio estimates and an improvement of Zhang-Xu-Situ inequality,” Stud. Univ. Babeş-Bolyai Math., vol. 60, no. 2, pp. 201–209, 2015.
S. Dumitrescu, “Estimates for the ratio of gamma functions by using higher order roots,” Stud. Univ. Babeş-Bolyai Math., vol. 60, no. 2, pp. 173–181, 2015.
N. Elezović, “Asymptotic expansions of gamma and related functions, binomial coefficients, inequalities and means,” J. Math. Inequal., vol. 9, no. 4, pp. 1001–1054, 2015, doi: 10.7153/jmi- 09-81.
R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics: A Foundation for Computer Science, 2nd ed. Addison-Wesley Publishing Company, Reading, MA, 1994.
S. Guo, J.-G. Xu, and F. Qi, “Some exact constants for the approximation of the quantity in the Wallis’ formula,” J. Inequal. Appl., 2013, Art. ID 67, doi: 10.1186/1029-242X-2013-67.
M. D. Hirschhorn, “Comments on the paper: “Wallis sequence ...” by Lampret,” Austral. Math. Soc. Gaz., vol. 32, no. 3, p. 194, 2005.
D. K. Kazarinoff, “On Wallis’ formula,” Edinburgh Math. Notes, vol. 1956, no. 40, pp. 19–21, 1956.
D. Kershaw, “Upper and lower bounds for a ratio involving the gamma function,” Anal. Appl. (Singap.), vol. 3, no. 3, pp. 293–295, 2005, doi: 10.1142/S0219530505000583.
A. Laforgia and P. Natalini, “On the asymptotic expansion of a ratio of gamma functions,” J. Math. Anal. Appl., vol. 389, no. 2, pp. 833–837, 2012, doi: 10.1016/j.jmaa.2011.12.025.
V. Lampret, “Wallis’ sequence estimated accurately using an alternating series,” J. Number Theory, vol. 172, pp. 256–269, 2017, doi: 10.1016/j.jnt.2016.08.014.
V. Lampret, “A simple asymptotic estimate of Wallis’ ratio using Stirling’s factorial formula,” Bull. Malays. Math. Sci. Soc., vol. 42, no. 6, pp. 3213–3221, 2019, doi: 10.1007/s40840-018- 0654-5.
V. Lampret, “Simple, accurate, asymptotic estimates for the ratio of two gamma functions,” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, vol. 115, no. 2, 2021, Art. ID 40, doi: 10.1007/s13398-020-00962-9.
A.-J. Li, W.-Z. Zhao, and C.-P. Chen, “Logarithmically complete monotonicity properties for the ratio of gamma function,” Adv. Stud. Contemp. Math. (Kyungshang), vol. 13, no. 2, pp. 183–191, 2006.
C. Mortici, “New approximation formulas for evaluating the ratio of gamma functions,” Math. Comput. Modelling, vol. 52, no. 1-2, pp. 425–433, 2010, doi: 10.1016/j.mcm.2010.03.013.
K. Nantomah, “Some inequalities for derivatives of the generalized Wallis’ cosine formula,” Int. J. Open Problems Comput. Sci. and Math., vol. 11, no. 4, pp. 16–24, 2018, doi: 10.1016/j.mcm.2010.03.013.
F. Qi, “Bounds for the ratio of two gamma functions,” RGMIA Res. Rep. Coll., vol. 11, no. 3, 2008, Art. ID 1, https://rgmia.org/papers/v11n3/bounds-two-gammas.pdf.
F. Qi, “Bounds for the ratio of two gamma functions–From Gautschi’s and Kershaw’s inequalities to completely monotonic functions,” 2009, arXiv:0904.1049.
F. Qi, “Bounds for the ratio of two gamma functions,” J. Inequal. Appl., 2010, Art. ID 493058, doi: 10.1155/2010/493058.
F. Qi, “Bounds for the ratio of two gamma functions: from Gautschi’s and Kershaw’s inequalities to complete monotonicity,” Turkish Journal of Analysis and Number Theory, vol. 2, pp. 152–164, 2014, doi: 10.12691/tjant-2-5-1.
F. Qi and Q.-M. Luo, “Bounds for the ratio of two gamma functions—from Wendel’s and related inequalities to logarithmically completely monotonic functions,” Banach J. Math. Anal., vol. 6, no. 2, pp. 132–158, 2012, doi: 10.15352/bjma/1342210165.
F. Qi and Q.-M. Luo, “Bounds for the ratio of two gamma functions: from Wendel’s asymptotic relation to Elezović-Giordano-Pečarić’s theorem,” J. Inequal. Appl., 2013, Art. ID 542, doi: 10.1186/1029-242x-2013-542.
D. V. Slavić, “On inequalities for Γ(x+1)/Γ(x+1/2),” Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., no. 498-541, pp. 17–20, 1975.
I. V. Tikhonov, V. B. Sherstyukov, and D. G. Tsvetkovich, “Comparative analysis of two-sided estimates of the central binomial coefficient,” Chelyab. Fiz.-Mat. Zh., vol. 5, no. 1, pp. 70–95, 2020, doi: 10.24411/2500-0101-2020-15106.
S. Wolfram, Mathematica 7.0, (2008). Wolfram Research, Inc.
Z.-H. Yang and J.-F. Tian, “On Burnside type approximation for the gamma function,” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, vol. 113, no. 3, pp. 2665–2677, 2019, doi: 10.1007/s13398-019-00651-2.
Z.-H. Yang and J.-F. Tian, “Monotonicity, convexity, and complete monotonicity of two functions related to the gamma function,” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, vol. 113, no. 4, pp. 3603–3617, 2019, doi: 10.1007/s13398-019-00719-z.
Z.-H. Yang, J.-F. Tian, and M.-H. Ha, “A new asymptotic expansion of a ratio of two gamma functions and complete monotonicity for its remainder,” Proc. Amer. Math. Soc., vol. 148, no. 5, pp. 2163–2178, 2020, doi: 10.1090/proc/14917.
X. You, “Approximation and bounds for the wallis ratio,” 2017, arXiv:1712.02107.
Most read articles by the same author(s)
- Vito Lampret, The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin‘s series , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Vito Lampret, Basic asymptotic estimates for powers of Wallis‘ ratios , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Vito Lampret, Estimating the remainder of an alternating \(p\)-series revisited , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
Similar Articles
- Iris A. López, On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck semigroup , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Razvan A. Mezei, Applications and Lipschitz results of approximation by smooth Picard and Gauss-Weierstrass type singular integrals , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- W. Tutschke, Interactions between partial differential equations and generalized analytic functions , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Takahiro Sudo, Real and stable ranks for certain crossed products of Toeplitz algebras , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Piotr Mikusi´nski, Generalized functions and convolutions , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Richard Delanghe, On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Fang Li, Zuodong Yang, Existence of blow-up solutions for quasilinear elliptic equation with nonlinear gradient term. , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Mark A. Pinsky, Asymptotic Solutions of Linear Differential Equations , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- George A. Anastassiou, Approximation by discrete singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- M. Arunkumar, Generalized Ulam - Hyers Stability of Derivations of a AQ - Functional Equation , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 V. Lampret

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.