Multiplicative maps on generalized \(n\)-matrix rings
-
Aisha Jabeen
ajabeen329@gmail.com
-
Bruno L. M. Ferreira
brunolmfalg@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.033Abstract
Let \(\mathfrak{R}\) and \(\mathfrak{R}'\) be two associative rings (not necessarily with identity elements). A bijective map \(\varphi\) of \(\mathfrak{R}\) onto \(\mathfrak{R}'\) is called an \textit{\(m\)-multiplicative isomorphism} if {\(\varphi (x_{1} \cdots x_{m}) = \varphi(x_{1}) \cdots \varphi(x_{m})\)} for all \(x_{1}, \dotsc ,x_{m}\in \mathfrak{R}.\) In this article, we establish a condition on generalized matrix rings, that assures that multiplicative maps are additive. And then, we apply our result for study of \(m\)-multiplicative isomorphisms and \(m\)-multiplicative derivations on generalized matrix rings.
Keywords
Mathematics Subject Classification:
X. Cheng and W. Jing, “Additivity of maps on triangular algebras,” Electron. J. Linear Algebra, vol. 17, pp. 597–615, 2008, doi: 10.13001/1081-3810.1285.
M. N. Daif, “When is a multiplicative derivation additive?” Internat. J. Math. Math. Sci., vol. 14, no. 3, pp. 615–618, 1991, doi: 10.1155/S0161171291000844.
B. L. M. Ferreira, “Multiplicative maps on triangular n-matrix rings,” Internat. J. Math., Game Theory and Algebra, vol. 23, no. 2, pp. 1–14, 2014.
Y. Li and Z. Xiao, “Additivity of maps on generalized matrix algebras,” Electron. J. Linear Algebra, vol. 22, pp. 743–757, 2011, doi: 10.13001/1081-3810.1471.
F. Y. Lu and J. H. Xie, “Multiplicative mappings of rings,” Acta Math. Sin. (Engl. Ser.), vol. 22, no. 4, pp. 1017–1020, 2006, doi: 10.1007/s10114-005-0620-7.
F. Lu, “Multiplicative mappings of operator algebras,” Linear Algebra Appl., vol. 347, pp. 283–291, 2002, doi: 10.1016/S0024-3795(01)00560-2.
W. S. Martindale, III, “When are multiplicative mappings additive?” Proc. Amer. Math. Soc., vol. 21, pp. 695–698, 1969, doi: 10.2307/2036449.
G. Tang and Y. Zhou, “A class of formal matrix rings,” Linear Algebra Appl., vol. 438, no. 12, pp. 4672–4688, 2013, doi: 10.1016/j.laa.2013.02.019.
Y. Wang, “The additivity of multiplicative maps on rings,” Comm. Algebra, vol. 37, no. 7, pp. 2351–2356, 2009, doi: 10.1080/00927870802623369.
Y. Wang, “Additivity of multiplicative maps on triangular rings,” Linear Algebra Appl., vol. 434, no. 3, pp. 625–635, 2011, doi: 10.1016/j.laa.2010.09.015.
Similar Articles
- Andrzej Bi´s, Mariusz Urba´nski, Some remarks on topological entropy of a semigroup of continuous maps , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Rigoberto Medina, Manuel Pinto, Conditionally integrable perturbations of linear differential systems , CUBO, A Mathematical Journal: No. 7 (1991): CUBO, Revista de Matemática
- Sushanta Kumar Mohanta, Coupled coincidence points for generalized (ψ, ϕ)-pair mappings in ordered cone metric spaces , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Chao-Ping Chen, Ai-Qi Liu, Feng Qi, Proofs for the Limit of Ratios of Consecutive Terms in Fibonacci Sequence , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Bai-Ni Guo, Three proofs of an identity involving derivatives of a positive definite matrix and its determinant , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Piotr Mikusi´nski, Generalized functions and convolutions , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Robert M. Yamaleev, Evolutionary method of construction of solutions of polynomials and related generalized dynamics , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Akshay Venkatesh, R.T. Naveen Kumar, On some recurrent properties of three dimensional K-contact manifolds , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Ratnesh Kumar Saraf, Miguel Caldas, On strongly Fβp-irresolute mappings , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Kuldip Raj, Sunil K. Sharma, Some generalized difference double sequence spaces defined by a sequence of Orlicz-functions , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 A. Jabeen et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.