Multiplicative maps on generalized \(n\)-matrix rings
-
Aisha Jabeen
ajabeen329@gmail.com
-
Bruno L. M. Ferreira
brunolmfalg@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.033Abstract
Let \(\mathfrak{R}\) and \(\mathfrak{R}'\) be two associative rings (not necessarily with identity elements). A bijective map \(\varphi\) of \(\mathfrak{R}\) onto \(\mathfrak{R}'\) is called an \textit{\(m\)-multiplicative isomorphism} if {\(\varphi (x_{1} \cdots x_{m}) = \varphi(x_{1}) \cdots \varphi(x_{m})\)} for all \(x_{1}, \dotsc ,x_{m}\in \mathfrak{R}.\) In this article, we establish a condition on generalized matrix rings, that assures that multiplicative maps are additive. And then, we apply our result for study of \(m\)-multiplicative isomorphisms and \(m\)-multiplicative derivations on generalized matrix rings.
Keywords
Mathematics Subject Classification:
X. Cheng and W. Jing, “Additivity of maps on triangular algebras,” Electron. J. Linear Algebra, vol. 17, pp. 597–615, 2008, doi: 10.13001/1081-3810.1285.
M. N. Daif, “When is a multiplicative derivation additive?” Internat. J. Math. Math. Sci., vol. 14, no. 3, pp. 615–618, 1991, doi: 10.1155/S0161171291000844.
B. L. M. Ferreira, “Multiplicative maps on triangular n-matrix rings,” Internat. J. Math., Game Theory and Algebra, vol. 23, no. 2, pp. 1–14, 2014.
Y. Li and Z. Xiao, “Additivity of maps on generalized matrix algebras,” Electron. J. Linear Algebra, vol. 22, pp. 743–757, 2011, doi: 10.13001/1081-3810.1471.
F. Y. Lu and J. H. Xie, “Multiplicative mappings of rings,” Acta Math. Sin. (Engl. Ser.), vol. 22, no. 4, pp. 1017–1020, 2006, doi: 10.1007/s10114-005-0620-7.
F. Lu, “Multiplicative mappings of operator algebras,” Linear Algebra Appl., vol. 347, pp. 283–291, 2002, doi: 10.1016/S0024-3795(01)00560-2.
W. S. Martindale, III, “When are multiplicative mappings additive?” Proc. Amer. Math. Soc., vol. 21, pp. 695–698, 1969, doi: 10.2307/2036449.
G. Tang and Y. Zhou, “A class of formal matrix rings,” Linear Algebra Appl., vol. 438, no. 12, pp. 4672–4688, 2013, doi: 10.1016/j.laa.2013.02.019.
Y. Wang, “The additivity of multiplicative maps on rings,” Comm. Algebra, vol. 37, no. 7, pp. 2351–2356, 2009, doi: 10.1080/00927870802623369.
Y. Wang, “Additivity of multiplicative maps on triangular rings,” Linear Algebra Appl., vol. 434, no. 3, pp. 625–635, 2011, doi: 10.1016/j.laa.2010.09.015.
Similar Articles
- Alain Escassut, Idempotents in an ultrametric Banach algebra , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Shalom Feigelstock, On Additive Groups of Rings , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Ratnesh Kumar Saraf, Miguel Caldas, On strongly Fβp-irresolute mappings , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Sóstenes Lins, Valdenberg Silva, On Maps with a Single Zigzag , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Piotr Mikusi´nski, Generalized functions and convolutions , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Bai-Ni Guo, Three proofs of an identity involving derivatives of a positive definite matrix and its determinant , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Juliana Conceição Precioso, A Family of Stationary Solutions to the Euler Equations and Generalized Solutions , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Andrzej Bi´s, Mariusz Urba´nski, Some remarks on topological entropy of a semigroup of continuous maps , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Boggiatto Paolo, De Donno Giuseppe, Oliaro Alessandro, Bui Kien Cuong, Generalized spectrograms and Ï„-Wigner transforms , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Rigoberto Medina, Manuel Pinto, Conditionally integrable perturbations of linear differential systems , CUBO, A Mathematical Journal: No. 7 (1991): CUBO, Revista de Matemática
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 A. Jabeen et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.