Multiplicative maps on generalized \(n\)-matrix rings
-
Aisha Jabeen
ajabeen329@gmail.com
-
Bruno L. M. Ferreira
brunolmfalg@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.033Abstract
Let \(\mathfrak{R}\) and \(\mathfrak{R}'\) be two associative rings (not necessarily with identity elements). A bijective map \(\varphi\) of \(\mathfrak{R}\) onto \(\mathfrak{R}'\) is called an \textit{\(m\)-multiplicative isomorphism} if {\(\varphi (x_{1} \cdots x_{m}) = \varphi(x_{1}) \cdots \varphi(x_{m})\)} for all \(x_{1}, \dotsc ,x_{m}\in \mathfrak{R}.\) In this article, we establish a condition on generalized matrix rings, that assures that multiplicative maps are additive. And then, we apply our result for study of \(m\)-multiplicative isomorphisms and \(m\)-multiplicative derivations on generalized matrix rings.
Keywords
Mathematics Subject Classification:
X. Cheng and W. Jing, “Additivity of maps on triangular algebras,” Electron. J. Linear Algebra, vol. 17, pp. 597–615, 2008, doi: 10.13001/1081-3810.1285.
M. N. Daif, “When is a multiplicative derivation additive?” Internat. J. Math. Math. Sci., vol. 14, no. 3, pp. 615–618, 1991, doi: 10.1155/S0161171291000844.
B. L. M. Ferreira, “Multiplicative maps on triangular n-matrix rings,” Internat. J. Math., Game Theory and Algebra, vol. 23, no. 2, pp. 1–14, 2014.
Y. Li and Z. Xiao, “Additivity of maps on generalized matrix algebras,” Electron. J. Linear Algebra, vol. 22, pp. 743–757, 2011, doi: 10.13001/1081-3810.1471.
F. Y. Lu and J. H. Xie, “Multiplicative mappings of rings,” Acta Math. Sin. (Engl. Ser.), vol. 22, no. 4, pp. 1017–1020, 2006, doi: 10.1007/s10114-005-0620-7.
F. Lu, “Multiplicative mappings of operator algebras,” Linear Algebra Appl., vol. 347, pp. 283–291, 2002, doi: 10.1016/S0024-3795(01)00560-2.
W. S. Martindale, III, “When are multiplicative mappings additive?” Proc. Amer. Math. Soc., vol. 21, pp. 695–698, 1969, doi: 10.2307/2036449.
G. Tang and Y. Zhou, “A class of formal matrix rings,” Linear Algebra Appl., vol. 438, no. 12, pp. 4672–4688, 2013, doi: 10.1016/j.laa.2013.02.019.
Y. Wang, “The additivity of multiplicative maps on rings,” Comm. Algebra, vol. 37, no. 7, pp. 2351–2356, 2009, doi: 10.1080/00927870802623369.
Y. Wang, “Additivity of multiplicative maps on triangular rings,” Linear Algebra Appl., vol. 434, no. 3, pp. 625–635, 2011, doi: 10.1016/j.laa.2010.09.015.
Similar Articles
- Oscar Rojo J., Ricardo Soto, On the construction of Jacobi matrices from spectral data , CUBO, A Mathematical Journal: No. 4 (1988): CUBO, Revista de Matemática
- Silvestru Sever Dragomir, Bounds for the generalized \( (\Phi;f) \)-mean difference , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Abdi Oli, Kelelaw Tilahun, G. V. Reddy, The Multivariable Aleph-function involving the Generalized Mellin-Barnes Contour Integrals , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Brian Weber, Toric, \(U(2)\), and LeBrun metrics , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Gaurav Kumar, Brij K. Tyagi, Weakly strongly star-Menger spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Homero G. Díaz-Marín, Osvaldo Osuna, Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- N. Seshagiri Rao, K. Kalyani, Fixed point results of \((\phi,\psi)\)-weak contractions in ordered \(b\)-metric spaces , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Buddhadev Pal, Santosh Kumar, Pankaj Kumar, Einstein warped product spaces on Lie groups , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- René Erlín Castillo, Babar Sultan, A derivative-type operator and its application to the solvability of a nonlinear three point boundary value problem , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Youssef N. Raffoul, Boundedness and stability in nonlinear systems of differential equations using a modified variation of parameters formula , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
<< < 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 A. Jabeen et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.