Multiplicative maps on generalized \(n\)-matrix rings
-
Aisha Jabeen
ajabeen329@gmail.com
-
Bruno L. M. Ferreira
brunolmfalg@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.033Abstract
Let \(\mathfrak{R}\) and \(\mathfrak{R}'\) be two associative rings (not necessarily with identity elements). A bijective map \(\varphi\) of \(\mathfrak{R}\) onto \(\mathfrak{R}'\) is called an \textit{\(m\)-multiplicative isomorphism} if {\(\varphi (x_{1} \cdots x_{m}) = \varphi(x_{1}) \cdots \varphi(x_{m})\)} for all \(x_{1}, \dotsc ,x_{m}\in \mathfrak{R}.\) In this article, we establish a condition on generalized matrix rings, that assures that multiplicative maps are additive. And then, we apply our result for study of \(m\)-multiplicative isomorphisms and \(m\)-multiplicative derivations on generalized matrix rings.
Keywords
Mathematics Subject Classification:
X. Cheng and W. Jing, “Additivity of maps on triangular algebras,” Electron. J. Linear Algebra, vol. 17, pp. 597–615, 2008, doi: 10.13001/1081-3810.1285.
M. N. Daif, “When is a multiplicative derivation additive?” Internat. J. Math. Math. Sci., vol. 14, no. 3, pp. 615–618, 1991, doi: 10.1155/S0161171291000844.
B. L. M. Ferreira, “Multiplicative maps on triangular n-matrix rings,” Internat. J. Math., Game Theory and Algebra, vol. 23, no. 2, pp. 1–14, 2014.
Y. Li and Z. Xiao, “Additivity of maps on generalized matrix algebras,” Electron. J. Linear Algebra, vol. 22, pp. 743–757, 2011, doi: 10.13001/1081-3810.1471.
F. Y. Lu and J. H. Xie, “Multiplicative mappings of rings,” Acta Math. Sin. (Engl. Ser.), vol. 22, no. 4, pp. 1017–1020, 2006, doi: 10.1007/s10114-005-0620-7.
F. Lu, “Multiplicative mappings of operator algebras,” Linear Algebra Appl., vol. 347, pp. 283–291, 2002, doi: 10.1016/S0024-3795(01)00560-2.
W. S. Martindale, III, “When are multiplicative mappings additive?” Proc. Amer. Math. Soc., vol. 21, pp. 695–698, 1969, doi: 10.2307/2036449.
G. Tang and Y. Zhou, “A class of formal matrix rings,” Linear Algebra Appl., vol. 438, no. 12, pp. 4672–4688, 2013, doi: 10.1016/j.laa.2013.02.019.
Y. Wang, “The additivity of multiplicative maps on rings,” Comm. Algebra, vol. 37, no. 7, pp. 2351–2356, 2009, doi: 10.1080/00927870802623369.
Y. Wang, “Additivity of multiplicative maps on triangular rings,” Linear Algebra Appl., vol. 434, no. 3, pp. 625–635, 2011, doi: 10.1016/j.laa.2010.09.015.
Similar Articles
- Juliana Conceição Precioso, A Family of Stationary Solutions to the Euler Equations and Generalized Solutions , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- R. Costa, On genetic algebras with prescribed derivations , CUBO, A Mathematical Journal: No. 4 (1988): CUBO, Revista de Matemática
- Boggiatto Paolo, De Donno Giuseppe, Oliaro Alessandro, Bui Kien Cuong, Generalized spectrograms and Ï„-Wigner transforms , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Elke Wolf, Differences of weighted composition operators between weighted Banach spaces of holomorphic functions and weighted Bloch type spaces , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- S. Albeverio, Ya. Belopolskaya, Generalized solutions of the Cauchy problem for the Navier-Stokes system and diffusion processes , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Richard Delanghe, On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Wolfgang Sproessig, Le Thu Hoai, On a new notion of holomorphy and its applications , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Alessandro Perotti, Regular quaternionic functions and conformal mappings , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- K. Gürlebeck, J. Morais, On mapping properties of monogenic functions , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- D. Le Peutrec, Small singular values of an extracted matrix of a Witten complex , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 A. Jabeen et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










