Multiplicative maps on generalized \(n\)-matrix rings
-
Aisha Jabeen
ajabeen329@gmail.com
-
Bruno L. M. Ferreira
brunolmfalg@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.033Abstract
Let \(\mathfrak{R}\) and \(\mathfrak{R}'\) be two associative rings (not necessarily with identity elements). A bijective map \(\varphi\) of \(\mathfrak{R}\) onto \(\mathfrak{R}'\) is called an \textit{\(m\)-multiplicative isomorphism} if {\(\varphi (x_{1} \cdots x_{m}) = \varphi(x_{1}) \cdots \varphi(x_{m})\)} for all \(x_{1}, \dotsc ,x_{m}\in \mathfrak{R}.\) In this article, we establish a condition on generalized matrix rings, that assures that multiplicative maps are additive. And then, we apply our result for study of \(m\)-multiplicative isomorphisms and \(m\)-multiplicative derivations on generalized matrix rings.
Keywords
Mathematics Subject Classification:
X. Cheng and W. Jing, “Additivity of maps on triangular algebras,” Electron. J. Linear Algebra, vol. 17, pp. 597–615, 2008, doi: 10.13001/1081-3810.1285.
M. N. Daif, “When is a multiplicative derivation additive?” Internat. J. Math. Math. Sci., vol. 14, no. 3, pp. 615–618, 1991, doi: 10.1155/S0161171291000844.
B. L. M. Ferreira, “Multiplicative maps on triangular n-matrix rings,” Internat. J. Math., Game Theory and Algebra, vol. 23, no. 2, pp. 1–14, 2014.
Y. Li and Z. Xiao, “Additivity of maps on generalized matrix algebras,” Electron. J. Linear Algebra, vol. 22, pp. 743–757, 2011, doi: 10.13001/1081-3810.1471.
F. Y. Lu and J. H. Xie, “Multiplicative mappings of rings,” Acta Math. Sin. (Engl. Ser.), vol. 22, no. 4, pp. 1017–1020, 2006, doi: 10.1007/s10114-005-0620-7.
F. Lu, “Multiplicative mappings of operator algebras,” Linear Algebra Appl., vol. 347, pp. 283–291, 2002, doi: 10.1016/S0024-3795(01)00560-2.
W. S. Martindale, III, “When are multiplicative mappings additive?” Proc. Amer. Math. Soc., vol. 21, pp. 695–698, 1969, doi: 10.2307/2036449.
G. Tang and Y. Zhou, “A class of formal matrix rings,” Linear Algebra Appl., vol. 438, no. 12, pp. 4672–4688, 2013, doi: 10.1016/j.laa.2013.02.019.
Y. Wang, “The additivity of multiplicative maps on rings,” Comm. Algebra, vol. 37, no. 7, pp. 2351–2356, 2009, doi: 10.1080/00927870802623369.
Y. Wang, “Additivity of multiplicative maps on triangular rings,” Linear Algebra Appl., vol. 434, no. 3, pp. 625–635, 2011, doi: 10.1016/j.laa.2010.09.015.
Similar Articles
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- S. Haq, K.S. Nisar, A.H. Khan, D.L. Suthar, Certain integral Transforms of the generalized Lommel-Wright function , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- G. Suresh, Ch Vasavi, T.S. Rao, M.S.N. Murty, Existence of Ψ-Bounded Solutions for Linear Matrix Difference Equations on Z+ , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Yuqing Chen, Donal O‘Regan, Ravi P. Agarwal, Degree theory for the sum of VMO maps and maximal monotone maps , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Ram U. Verma, Linear convergence analysis for general proximal point algorithms involving (H, η) − monotonicity frameworks , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Ram U. Verma, The ϵ−Optimality conditions for multiple objective fractional programming problems for generalized (Ï, η)−invexity of higher order , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Irena Kosi-Ulbl, Joso Vukman, An identity related to derivations of standard operator algebras and semisimple H∗ -algebras , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Jan Brandts, Computation of Invariant Subspaces of Large and Sparse Matrices , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- S.S. Dragomir, Refinements of the generalized trapezoid inequality in terms of the cumulative variation and applications , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- D.G. Prakasha, H.G. Nagaraja, On quasi-conformally flat and quasi-conformally semisymmetric generalized Sasakian-space-forms , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 A. Jabeen et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.