Curvature properties of \(\alpha\)-cosymplectic manifolds with \(\ast\)-\(\eta\)-Ricci-Yamabe solitons
-
Vandana
chandelvandana93@gmail.com
-
Rajeev Budhiraja
rajeevkumarbudhiraja@gmail.com
-
Aliya Naaz Siddiqui Diop
aliya.siddiqui@galgotiasuniversity.edu.in
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.091Abstract
In this research article, we study \(\ast\)-\(\eta\)-Ricci-Yamabe solitons on an \(\alpha\)-cosymplectic manifold by giving an example in the support and also prove that it is an \(\eta\)-Einstein manifold. In addition, we investigate an \(\alpha\)-cosymplectic manifold admitting \(\ast\)-\(\eta\)-Ricci-Yamabe solitons under some conditions. Lastly, we discuss the concircular, conformal, conharmonic, and \(W_2\)-curvatures on the said manifold admitting \(\ast\)-\(\eta\)-Ricci-Yamabe solitons.
Keywords
Mathematics Subject Classification:
D. E. Blair, Contact manifolds in Riemannian geometry, ser. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1976, vol. 509.
J. T. Cho and M. Kimura, “Ricci solitons and real hypersurfaces in a complex space form,” Tohoku Math. J. (2), vol. 61, no. 2, pp. 205–212, 2009, doi: 10.2748/tmj/1245849443.
D. Dey, “Almost Kenmotsu metric as Ricci-Yamabe soliton,” 2020, arXiv:2005.02322.
S. Dey, P. L.-i. Laurian-ıoan, and S. Roy, “Geometry of ∗-k-ricci-yamabe soliton and gradi- ent ∗-k-ricci-yamabe soliton on kenmotsu manifolds,” Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, p. 907–922, 2023, doi: 10.15672/hujms.1074722.
S. Dey and S. Roy, “∗-η-Ricci soliton within the framework of Sasakian manifold,” J. Dyn. Syst. Geom. Theor., vol. 18, no. 2, pp. 163–181, 2020, doi: 10.1080/1726037X.2020.1856339.
L. P. Eisenhart, Riemannian Geometry. Princeton University Press, Princeton, NJ, 1949, 2d printing.
S. Güler and M. Crasmareanu, “Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy,” Turkish J. Math., vol. 43, no. 5, pp. 2631–2641, 2019, doi: 10.3906/mat-1902-38.
T. Hamada, “Real hypersurfaces of complex space forms in terms of Ricci ∗-tensor,” Tokyo J. Math., vol. 25, no. 2, pp. 473–483, 2002, doi: 10.3836/tjm/1244208866.
R. S. Hamilton, “Three-manifolds with positive Ricci curvature,” J. Differential Geometry, vol. 17, no. 2, pp. 255–306, 1982.
R. S. Hamilton, “The Ricci flow on surfaces,” in Mathematics and general relativity (Santa Cruz, CA, 1986), ser. Contemp. Math. Amer. Math. Soc., Providence, RI, 1988, vol. 71, pp. 237–262, doi: 10.1090/conm/071/954419.
A. Haseeb, D. G. Prakasha, and H. Harish, “∗-conformal η-Ricci solitons on α-cosymplectic manifolds,” IJAA, vol. 19, no. 2, pp. 165–179, 2021, Art. ID 5718736, doi: 10.28924/2291-8639.
A. Haseeb, R. Prasad, and F. Mofarreh, “Sasakian manifolds admitting ∗-η-Ricci-Yamabe solitons,” Adv. Math. Phys., 2022, Art. ID 5718736, doi: 10.1155/2022/5718736.
Y. Ishii, “On conharmonic transformations,” Tensor (N.S.), vol. 7, pp. 73–80, 1957.
Z. Olszak, “Locally conformal almost cosymplectic manifolds,” Colloq. Math., vol. 57, no. 1, pp. 73–87, 1989, doi: 10.4064/cm-57-1-73-87.
Z. Olszak and R. Roşca, “Normal locally conformal almost cosymplectic manifolds,” Publ. Math. Debrecen, vol. 39, no. 3-4, pp. 315–323, 1991, doi: 10.5486/pmd.1991.39.3-4.12.
G. P. Pokhariyal and R. S. Mishra, “Curvature tensors’ and their relativistics significance,” Yokohama Math. J., vol. 18, pp. 105–108, 1970.
S. Roy, S. Dey, and A. Bhattacharyya, “Some results on η-Yamabe solitons in 3-dimensional trans-Sasakian manifold,” Carpathian Math. Publ., vol. 14, no. 1, pp. 158–170, 2022, doi: 10.15330/cmp.14.1.158-170.
S. Roy, S. Dey, A. Bhattacharyya, and M. D. Siddiqi, “∗-η-Ricci-Yamabe solitons on α- cosymplectic manifolds with a quarter-symmetric metric connection,” 2021, arXiv:2109.04700.
R. Sharma, “Certain results on K-contact and (k,μ)-contact manifolds,” J. Geom., vol. 89, no. 1-2, pp. 138–147, 2008, doi: 10.1007/s00022-008-2004-5.
M. D. Siddiqi and M. A. Akyol, “η-Ricci-Yamabe soliton on Riemannian submersions from Riemannian manifolds,” 2021, arXiv:2004.14124.
A. N. Siddiqui and M. D. Siddiqi, “Almost Ricci-Bourguignon solitons and geometrical structure in a relativistic perfect fluid spacetime,” Balkan J. Geom. Appl., vol. 26, no. 2, pp. 126–138, 2021.
S.-i. Tachibana, “On almost-analytic vectors in almost-Kählerian manifolds,” Tohoku Math. J. (2), vol. 11, pp. 247–265, 1959, doi: 10.2748/tmj/1178244584.
H. I. Yoldaş, “On Kenmotsu manifolds admitting η-Ricci-Yamabe solitons,” Int. J. Geom. Methods Mod. Phys., vol. 18, no. 12, 2021, Art. ID 2150189, doi: 10.1142/S0219887821501899.
H. I. Yoldaş, “Some results on α-cosympletic manifolds,” Bull. Transilv. Univ. Braşov Ser. III. Math. Comput. Sci., vol. 1(63), no. 2, pp. 115–128, 2021, doi: 10.31926/but.mif.2021.1.63.2.10.
H. I. Yoldaş, “Some soliton types on Riemannian manifolds,” Rom. J. Math. Comput. Sci., vol. 11, no. 2, pp. 13–20, 2021.
H. I. Yoldaş, “Some classes of Ricci solitons on Lorentzian α-Sasakian manifolds,” Differ. Geom. Dyn. Syst., vol. 24, pp. 232–244, 2022, doi: 10.3390/e24020244.
P. Zhang, Y. Li, S. Roy, S. Dey, and A. Bhattacharyya, “Geometrical structure in a perfect fluid spacetime with conformal Ricci–Yamabe soliton,” Symmetry, vol. 14, no. 3, 2022, Art. ID 594, doi: 10.3390/sym14030594.
Similar Articles
- Marcel Berger, La geometrie de Riemann Aperçu historique et resultats recents , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Venkatesha, Shanmukha B., \(W_2\)-curvature tensor on generalized Sasakian space forms , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Dmitri V. Alekseevsky, Masoud Ganji, Gerd Schmalz, Andrea Spiro, The Levi-Civita connections of Lorentzian manifolds with prescribed optical geometries , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Nafaa Chbili, Sym´etries en Dimension Trois: Une Approche Quantique , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- Yaroslav Kurylev, Matti Lassas, Multidimensional Gel'fand Inverse Boundary Spectral Problem: Uniqueness and Stability , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- V. V. Palin, E. V. Radkevich, The Maxwell problem and the Chapman projection , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Lei Ni, A maximum principle for tensors on complete manifolds and its applications , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Anjali Goswami, Special recurrent transformation in an NPR-Finsler space , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Onder Gokmen Yildiz, Soley Ersoy, Melek Masal, A note on inextensible flows of curves on oriented surface , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- C. S. Bagewadi, M. S. Siddesha, Submanifolds of a (k,μ)-contact manifold , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vandana et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.