Curvature properties of \(\alpha\)-cosymplectic manifolds with \(\ast\)-\(\eta\)-Ricci-Yamabe solitons
-
Vandana
chandelvandana93@gmail.com
-
Rajeev Budhiraja
rajeevkumarbudhiraja@gmail.com
-
Aliya Naaz Siddiqui Diop
aliya.siddiqui@galgotiasuniversity.edu.in
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.091Abstract
In this research article, we study \(\ast\)-\(\eta\)-Ricci-Yamabe solitons on an \(\alpha\)-cosymplectic manifold by giving an example in the support and also prove that it is an \(\eta\)-Einstein manifold. In addition, we investigate an \(\alpha\)-cosymplectic manifold admitting \(\ast\)-\(\eta\)-Ricci-Yamabe solitons under some conditions. Lastly, we discuss the concircular, conformal, conharmonic, and \(W_2\)-curvatures on the said manifold admitting \(\ast\)-\(\eta\)-Ricci-Yamabe solitons.
Keywords
Mathematics Subject Classification:
D. E. Blair, Contact manifolds in Riemannian geometry, ser. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1976, vol. 509.
J. T. Cho and M. Kimura, “Ricci solitons and real hypersurfaces in a complex space form,” Tohoku Math. J. (2), vol. 61, no. 2, pp. 205–212, 2009, doi: 10.2748/tmj/1245849443.
D. Dey, “Almost Kenmotsu metric as Ricci-Yamabe soliton,” 2020, arXiv:2005.02322.
S. Dey, P. L.-i. Laurian-ıoan, and S. Roy, “Geometry of ∗-k-ricci-yamabe soliton and gradi- ent ∗-k-ricci-yamabe soliton on kenmotsu manifolds,” Hacettepe Journal of Mathematics and Statistics, vol. 52, no. 4, p. 907–922, 2023, doi: 10.15672/hujms.1074722.
S. Dey and S. Roy, “∗-η-Ricci soliton within the framework of Sasakian manifold,” J. Dyn. Syst. Geom. Theor., vol. 18, no. 2, pp. 163–181, 2020, doi: 10.1080/1726037X.2020.1856339.
L. P. Eisenhart, Riemannian Geometry. Princeton University Press, Princeton, NJ, 1949, 2d printing.
S. Güler and M. Crasmareanu, “Ricci-Yamabe maps for Riemannian flows and their volume variation and volume entropy,” Turkish J. Math., vol. 43, no. 5, pp. 2631–2641, 2019, doi: 10.3906/mat-1902-38.
T. Hamada, “Real hypersurfaces of complex space forms in terms of Ricci ∗-tensor,” Tokyo J. Math., vol. 25, no. 2, pp. 473–483, 2002, doi: 10.3836/tjm/1244208866.
R. S. Hamilton, “Three-manifolds with positive Ricci curvature,” J. Differential Geometry, vol. 17, no. 2, pp. 255–306, 1982.
R. S. Hamilton, “The Ricci flow on surfaces,” in Mathematics and general relativity (Santa Cruz, CA, 1986), ser. Contemp. Math. Amer. Math. Soc., Providence, RI, 1988, vol. 71, pp. 237–262, doi: 10.1090/conm/071/954419.
A. Haseeb, D. G. Prakasha, and H. Harish, “∗-conformal η-Ricci solitons on α-cosymplectic manifolds,” IJAA, vol. 19, no. 2, pp. 165–179, 2021, Art. ID 5718736, doi: 10.28924/2291-8639.
A. Haseeb, R. Prasad, and F. Mofarreh, “Sasakian manifolds admitting ∗-η-Ricci-Yamabe solitons,” Adv. Math. Phys., 2022, Art. ID 5718736, doi: 10.1155/2022/5718736.
Y. Ishii, “On conharmonic transformations,” Tensor (N.S.), vol. 7, pp. 73–80, 1957.
Z. Olszak, “Locally conformal almost cosymplectic manifolds,” Colloq. Math., vol. 57, no. 1, pp. 73–87, 1989, doi: 10.4064/cm-57-1-73-87.
Z. Olszak and R. Roşca, “Normal locally conformal almost cosymplectic manifolds,” Publ. Math. Debrecen, vol. 39, no. 3-4, pp. 315–323, 1991, doi: 10.5486/pmd.1991.39.3-4.12.
G. P. Pokhariyal and R. S. Mishra, “Curvature tensors’ and their relativistics significance,” Yokohama Math. J., vol. 18, pp. 105–108, 1970.
S. Roy, S. Dey, and A. Bhattacharyya, “Some results on η-Yamabe solitons in 3-dimensional trans-Sasakian manifold,” Carpathian Math. Publ., vol. 14, no. 1, pp. 158–170, 2022, doi: 10.15330/cmp.14.1.158-170.
S. Roy, S. Dey, A. Bhattacharyya, and M. D. Siddiqi, “∗-η-Ricci-Yamabe solitons on α- cosymplectic manifolds with a quarter-symmetric metric connection,” 2021, arXiv:2109.04700.
R. Sharma, “Certain results on K-contact and (k,μ)-contact manifolds,” J. Geom., vol. 89, no. 1-2, pp. 138–147, 2008, doi: 10.1007/s00022-008-2004-5.
M. D. Siddiqi and M. A. Akyol, “η-Ricci-Yamabe soliton on Riemannian submersions from Riemannian manifolds,” 2021, arXiv:2004.14124.
A. N. Siddiqui and M. D. Siddiqi, “Almost Ricci-Bourguignon solitons and geometrical structure in a relativistic perfect fluid spacetime,” Balkan J. Geom. Appl., vol. 26, no. 2, pp. 126–138, 2021.
S.-i. Tachibana, “On almost-analytic vectors in almost-Kählerian manifolds,” Tohoku Math. J. (2), vol. 11, pp. 247–265, 1959, doi: 10.2748/tmj/1178244584.
H. I. Yoldaş, “On Kenmotsu manifolds admitting η-Ricci-Yamabe solitons,” Int. J. Geom. Methods Mod. Phys., vol. 18, no. 12, 2021, Art. ID 2150189, doi: 10.1142/S0219887821501899.
H. I. Yoldaş, “Some results on α-cosympletic manifolds,” Bull. Transilv. Univ. Braşov Ser. III. Math. Comput. Sci., vol. 1(63), no. 2, pp. 115–128, 2021, doi: 10.31926/but.mif.2021.1.63.2.10.
H. I. Yoldaş, “Some soliton types on Riemannian manifolds,” Rom. J. Math. Comput. Sci., vol. 11, no. 2, pp. 13–20, 2021.
H. I. Yoldaş, “Some classes of Ricci solitons on Lorentzian α-Sasakian manifolds,” Differ. Geom. Dyn. Syst., vol. 24, pp. 232–244, 2022, doi: 10.3390/e24020244.
P. Zhang, Y. Li, S. Roy, S. Dey, and A. Bhattacharyya, “Geometrical structure in a perfect fluid spacetime with conformal Ricci–Yamabe soliton,” Symmetry, vol. 14, no. 3, 2022, Art. ID 594, doi: 10.3390/sym14030594.
Similar Articles
- Sunil Kumar Yadav, Abhishek Kushwaha, Dhruwa Narain, Certain results for η-Ricci Solitons and Yamabe Solitons on quasi-Sasakian 3-Manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Shyamal Kumar Hui, On weak concircular symmetries of trans-Sasakian manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Pradip Majhi, Debabrata Kar, Beta-almost Ricci solitons on Sasakian 3-manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Dhruwa Narain, Sunil Yadav, On Weak concircular Symmetries of Lorentzian Concircular Structure Manifolds , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Venkatesha, Divyashree G., Three dimensional f-Kenmotsu manifold satisfying certain curvature conditions , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- S. K. Yadav, S. K. Chaubey, D. L. Suthar, Some geometric properties of η− Ricci solitons and gradient Ricci solitons on (ð‘™ð‘ð‘ )ð‘›âˆ’manifolds , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- A.A. Shaikh, C.S. Bagewadi, On ð˜•(ð‘˜)-Contact Metric Manifolds , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Akshay Venkatesh, R.T. Naveen Kumar, On some recurrent properties of three dimensional K-contact manifolds , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Bhawana Chaube, S. K. Chanyal, Quarter-symmetric metric connection on a p-Kenmotsu manifold , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Yadab Chandra Mandal, Shyamal Kumar Hui, Yamabe Solitons with potential vector field as torse forming , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vandana et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.