Quarter-symmetric metric connection on a p-Kenmotsu manifold
-
Bhawana Chaube
bhawanachaube18@gmail.com
-
S. K. Chanyal
skchanyal.math@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.153Abstract
In the present paper we study para-Kenmotsu (p-Kenmotsu) manifold equipped with quarter-symmetric metric connection and discuss certain derivation conditions.
Keywords
Mathematics Subject Classification:
S. C. Biswas and U. C. De, “Quarter-symmetric metric connection in an SP-Sasakian manifold,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 46, no. 1-2, pp. 49–56, 1997.
A. De, “On Kenmotsu manifold,” Bull. Math. Anal. Appl., vol. 2, no. 3, pp. 1–6, 2010.
U. C. De and G. Pathak, “On 3-dimensional Kenmotsu manifolds,” Indian J. Pure Appl. Math., vol. 35, no. 2, pp. 159–165, 2004.
U. C. De and J. Sengupta, “Quater-symmetric metric connection on a Sasakian manifold,” Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 49, no. 1-2, pp. 7–13, 2000.
U. C. De, D. Mandal, and K. Mandal, “Some characterizations of Kenmotsu manifolds admitting a quarter-symmetric metric connection,” Bull. Transilv. Univ. Braşov Ser. III, vol. 9(58), no. 1, pp. 39–52, 2016.
A. Friedman and J. A. Schouten,“Über die Geometrie der halbsymmetrischen Übertragungen,” Math Z, vol. 21, pp. 211–223, 1924, doi: 10.1007/BF01187468.
S. Gołąb, “On semi-symmetric and quarter-symmetric linear connections,” Tensor (N.S.), vol. 29, no. 3, pp. 249–254, 1975.
A. Haseeb and R. Prasad, “Certain results on Lorentzian para-Kenmotsu manifolds,” Bol. Soc. Parana. Mat. (3), vol. 39, no. 3, pp. 201–220, 2021.
J.-B. Jun, U. C. De, and G. Pathak, “On Kenmotsu manifolds,” J. Korean Math. Soc., vol. 42, no. 3, pp. 435–445, 2005, doi: 10.4134/JKMS.2005.42.3.435.
K. Kenmotsu, “A class of almost contact Riemannian manifolds,” Tohoku Math. J. (2), vol. 24, pp. 93–103, 1972, doi: 10.2748/tmj/1178241594.
M. Kon and K. Yano, Structures on manifolds, ser. Series in Pure Mathematics. Chandrama Prakashan, Allahabad, 1985, vol. 3, doi: 10.1142/0067.
R. S. Mishra, Structures on a differentiable manifold and their applications. Chandrama Prakashan, Allahabad, 1984.
I. Sato, “On a structure similar to the almost contact structure,” Tensor (N.S.), vol. 30, no. 3, pp. 219–224, 1976.
T. Satyanarayana and K. L. S. Prasad, “On a type of para-Kenmotsu manifold,” Pure Mathematical Sciences, vol. 2, no. 4, pp. 165–170, 2013.
R. N. Singh, S. K. Pandey, and G. Pandey, “On a type of Kenmotsu manifold,” Bull. Math. Anal. Appl., vol. 4, no. 1, pp. 117–132, 2012.
B. B. Sinha and K. L. Sai Prasad, “A class of almost para contact metric manifold,” Bull. Calcutta Math. Soc., vol. 87, no. 4, pp. 307–312, 1995.
S. Sular, C. Özgür, and U. C. De, “Quarter-symmetric metric connection in a Kenmotsu manifold,” SUT J. Math., vol. 44, no. 2, pp. 297–306, 2008.
W. Tang, P. Majhi, P. Zhao, and U. C. De, “Legendre curves on 3-dimensional Kenmotsu manifolds admitting semisymmetric metric connection,” Filomat, vol. 32, no. 10, pp. 3651– 3656, 2018, doi: 10.2298/fil1810651t.
M. M. Tripathi, “On a semi symmetric metric connection in a Kenmotsu manifold,” J. Pure Math., vol. 16, pp. 67–71, 1999.
- Department of Science and Technology (IF200486)
Similar Articles
- Lionel Henríquez Barrientos, Solución de la Cuártica , CUBO, A Mathematical Journal: No. 3 (1987): CUBO, Revista de Matemática
- Luis Hevia R., Aplicaciones de funciones generatrices y lenguajes formales a problemas de combinatoria y estructura de datos , CUBO, A Mathematical Journal: No. 3 (1987): CUBO, Revista de Matemática
- Mohd Danish Siddiqi, Mehmet Akif Akyol, Anti-invariant \({\xi^{\bot}}\)-Riemannian submersions from hyperbolic \(\beta\)-Kenmotsu manifolds , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- A. Kamal, T.I. Yassen, D-metric Spaces and Composition Operators Between Hyperbolic Weighted Family of Function Spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Rajendra Prasad, Mehmet Akif Akyol, Sushil Kumar, Punit Kumar Singh, Quasi bi-slant submersions in contact geometry , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Filippo Cammaroto, Infinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operator , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- G. M. Sofi, W. M. Shah, A note on the structure of the zeros of a polynomial and Sendov's conjecture , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Gábor Czédli, Minimum-sized generating sets of the direct powers of free distributive lattices , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Rubén A. Hidalgo, Una observación sencilla sobre vectores de constantes de Riemann y divisores no-especiales de curvas generalizadas de Fermat , CUBO, A Mathematical Journal: In Press
<< < 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 B. Chaube et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.