Steffensen-like method in Riemannian manifolds
-
Chandresh Prasad
prasadchandresh20592@gmail.com
-
P. K. Parida
pkparida@cuj.ac.in
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.525Abstract
In this paper, we present semilocal convergence of Steffensen-like method for approximating zeros of a vector field in Riemannian manifolds. We establish the convergence of Steffensen-like method under Lipschitz continuity condition on first order covariant derivative of a vector field. Finally, two examples are given to show the application of our theorem.
Keywords
Mathematics Subject Classification:
P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds. Princeton University Press, Princeton, NJ, 2008, doi: 10.1515/9781400830244.
R. L. Adler, J.-P. Dedieu, J. Y. Margulies, M. Martens, and M. Shub, “Newton’s method on Riemannian manifolds and a geometric model for the human spine,” IMA J. Numer. Anal., vol. 22, no. 3, pp. 359–390, 2002, doi: 10.1093/imanum/22.3.359.
F. Alvarez, J. Bolte, and J. Munier, “A unifying local convergence result for Newton’s method in Riemannian manifolds,” Found. Comput. Math., vol. 8, no. 2, pp. 197–226, 2008, doi: 10.1007/s10208-006-0221-6.
S. Amat, I. K. Argyros, S. Busquier, R. Castro, S. Hilout, and S. Plaza, “Traub-type high order iterative procedures on Riemannian manifolds,” SeMA J., vol. 63, pp. 27–52, 2014, doi: 10.1007/s40324-014-0010-0.
S. Amat, J. A. Ezquerro, and M. A. Hernández-Verón, “On a Steffensen-like method for solving nonlinear equations,” Calcolo, vol. 53, no. 2, pp. 171–188, 2016, doi: 10.1007/s10092-015-0142- 3.
I. K. Argyros, “An improved unifying convergence analysis of Newton’s method in Riemannian manifolds,” J. Appl. Math. Comput., vol. 25, no. 1-2, pp. 345–351, 2007, doi: 10.1007/BF02832359.
I. K. Argyros, Convergence and applications of Newton-type iterations. Springer, New York, 2008.
I. K. Argyros, Y. J. Cho, and S. Hilout, Numerical Methods for Equations and Variational Inclusions. New York: CRC Press/Taylor and Francis Group, 2012.
I. K. Argyros, Y. J. Cho, and S. Hilout, Numerical methods for equations and its applications. CRC Press, Boca Raton, FL, 2012.
I. K. Argyros, S. Hilout, and M. A. Tabatabai, Mathematical modelling with applications in biosciences and engineering. Nova Science Publishers, Incorporated, 2011.
R. A. Castro, J. C. Rodríguez, W. W. Sierra, G. L. Di Giorgi, and S. J. Gómez, “Chebyshev-Halley’s method on Riemannian manifolds,” J. Comput. Appl. Math., vol. 336, pp. 30–53, 2018, doi: 10.1016/j.cam.2017.12.019.
J.-P. Dedieu and D. Nowicki, “Symplectic methods for the approximation of the exponential map and the Newton iteration on Riemannian submanifolds,” J. Complexity, vol. 21, no. 4, pp. 487–501, 2005, doi: 10.1016/j.jco.2004.09.010.
J.-P. Dedieu, P. Priouret, and G. Malajovich, “Newton’s method on Riemannian manifolds: convariant alpha theory,” IMA J. Numer. Anal., vol. 23, no. 3, pp. 395–419, 2003, doi: 10.1093/imanum/23.3.395.
O. P. Ferreira and B. F. Svaiter, “Kantorovich’s theorem on Newton’s method in Riemannian manifolds,” J. Complexity, vol. 18, no. 1, pp. 304–329, 2002, doi: 10.1006/jcom.2001.0582.
D. Groisser, “Newton’s method, zeroes of vector fields, and the Riemannian center of mass,” Adv. in Appl. Math., vol. 33, no. 1, pp. 95–135, 2004, doi: 10.1016/j.aam.2003.08.003.
S. Lang, Differential and Riemannian manifolds, 3rd ed., ser. Graduate Texts in Mathematics. Springer-Verlag, New York, 1995, vol. 160, doi: 10.1007/978-1-4612-4182-9.
W. Li, F. Szidarovszky, and Y. Kuang, “Notes on the stability of dynamic economic systems,” Appl. Math. Comput., vol. 108, no. 2-3, pp. 85–89, 2000, doi: 10.1016/S0096-3003(98)10140-6.
T. Sakai, Riemannian geometry, ser. Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1996, vol. 149, doi: 10.1090/mmono/149.
M. A. Tabatabai, W. M. Eby, and K. P. Singh, “Hyperbolastic modeling of wound healing,” Math. Comput. Modelling, vol. 53, no. 5-6, pp. 755–768, 2011, doi: 10.1016/j.mcm.2010.10.013.
L. W. Tu, An introduction to manifolds, 2nd ed., ser. Universitext. Springer, New York, 2011, doi: 10.1007/978-1-4419-7400-6.
J. H. Wang, “Convergence of Newton’s method for sections on Riemannian manifolds,” J. Optim. Theory Appl., vol. 148, no. 1, pp. 125–145, 2011, doi: 10.1007/s10957-010-9748-4.
- UGC (No: NFO-2018- 19-OBC-JHA-68560)
Most read articles by the same author(s)
- Shwet Nisha, P. K. Parida, Super-Halley method under majorant conditions in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
Similar Articles
- Balwant Singh Thakur, An iterative method for finite family of hemi contractions in Hilbert space , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Yavar Kian, Local energy decay for the wave equation with a time-periodic non-trapping metric and moving obstacle , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- T. A. Burton, Bo Zhang, Bounded and periodic solutions of integral equations , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Rubén A. Hidalgo, A short note on ð‘€-symmetric hyperelliptic Riemann surfaces * , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Ismael Bleyer, A. Leitão, On Tikhonov Functionals Penalized by Bregman Distances , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Juan B. Gil, Structure of Resolvents of Elliptic Cone Differential Operators: A Brief Survey , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Colin Guillarmou, Scattering Theory on Geometrically Finite Quotients with Rational Cusps , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Juhani Riihentaus, On an inequality related to the radial growth of subharmonic functions , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Carl Chiarella, Ferenc Szidarovszky, A Multiobjective Model of Oligopolies under Uncertainty , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- László Kapolyi, Network Oligopolies with Multiple Markets , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
<< < 4 5 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 C. Prasad et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.