Steffensen-like method in Riemannian manifolds
-
Chandresh Prasad
prasadchandresh20592@gmail.com
-
P. K. Parida
pkparida@cuj.ac.in
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.525Abstract
In this paper, we present semilocal convergence of Steffensen-like method for approximating zeros of a vector field in Riemannian manifolds. We establish the convergence of Steffensen-like method under Lipschitz continuity condition on first order covariant derivative of a vector field. Finally, two examples are given to show the application of our theorem.
Keywords
Mathematics Subject Classification:
P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds. Princeton University Press, Princeton, NJ, 2008, doi: 10.1515/9781400830244.
R. L. Adler, J.-P. Dedieu, J. Y. Margulies, M. Martens, and M. Shub, “Newton’s method on Riemannian manifolds and a geometric model for the human spine,” IMA J. Numer. Anal., vol. 22, no. 3, pp. 359–390, 2002, doi: 10.1093/imanum/22.3.359.
F. Alvarez, J. Bolte, and J. Munier, “A unifying local convergence result for Newton’s method in Riemannian manifolds,” Found. Comput. Math., vol. 8, no. 2, pp. 197–226, 2008, doi: 10.1007/s10208-006-0221-6.
S. Amat, I. K. Argyros, S. Busquier, R. Castro, S. Hilout, and S. Plaza, “Traub-type high order iterative procedures on Riemannian manifolds,” SeMA J., vol. 63, pp. 27–52, 2014, doi: 10.1007/s40324-014-0010-0.
S. Amat, J. A. Ezquerro, and M. A. Hernández-Verón, “On a Steffensen-like method for solving nonlinear equations,” Calcolo, vol. 53, no. 2, pp. 171–188, 2016, doi: 10.1007/s10092-015-0142- 3.
I. K. Argyros, “An improved unifying convergence analysis of Newton’s method in Riemannian manifolds,” J. Appl. Math. Comput., vol. 25, no. 1-2, pp. 345–351, 2007, doi: 10.1007/BF02832359.
I. K. Argyros, Convergence and applications of Newton-type iterations. Springer, New York, 2008.
I. K. Argyros, Y. J. Cho, and S. Hilout, Numerical Methods for Equations and Variational Inclusions. New York: CRC Press/Taylor and Francis Group, 2012.
I. K. Argyros, Y. J. Cho, and S. Hilout, Numerical methods for equations and its applications. CRC Press, Boca Raton, FL, 2012.
I. K. Argyros, S. Hilout, and M. A. Tabatabai, Mathematical modelling with applications in biosciences and engineering. Nova Science Publishers, Incorporated, 2011.
R. A. Castro, J. C. Rodríguez, W. W. Sierra, G. L. Di Giorgi, and S. J. Gómez, “Chebyshev-Halley’s method on Riemannian manifolds,” J. Comput. Appl. Math., vol. 336, pp. 30–53, 2018, doi: 10.1016/j.cam.2017.12.019.
J.-P. Dedieu and D. Nowicki, “Symplectic methods for the approximation of the exponential map and the Newton iteration on Riemannian submanifolds,” J. Complexity, vol. 21, no. 4, pp. 487–501, 2005, doi: 10.1016/j.jco.2004.09.010.
J.-P. Dedieu, P. Priouret, and G. Malajovich, “Newton’s method on Riemannian manifolds: convariant alpha theory,” IMA J. Numer. Anal., vol. 23, no. 3, pp. 395–419, 2003, doi: 10.1093/imanum/23.3.395.
O. P. Ferreira and B. F. Svaiter, “Kantorovich’s theorem on Newton’s method in Riemannian manifolds,” J. Complexity, vol. 18, no. 1, pp. 304–329, 2002, doi: 10.1006/jcom.2001.0582.
D. Groisser, “Newton’s method, zeroes of vector fields, and the Riemannian center of mass,” Adv. in Appl. Math., vol. 33, no. 1, pp. 95–135, 2004, doi: 10.1016/j.aam.2003.08.003.
S. Lang, Differential and Riemannian manifolds, 3rd ed., ser. Graduate Texts in Mathematics. Springer-Verlag, New York, 1995, vol. 160, doi: 10.1007/978-1-4612-4182-9.
W. Li, F. Szidarovszky, and Y. Kuang, “Notes on the stability of dynamic economic systems,” Appl. Math. Comput., vol. 108, no. 2-3, pp. 85–89, 2000, doi: 10.1016/S0096-3003(98)10140-6.
T. Sakai, Riemannian geometry, ser. Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1996, vol. 149, doi: 10.1090/mmono/149.
M. A. Tabatabai, W. M. Eby, and K. P. Singh, “Hyperbolastic modeling of wound healing,” Math. Comput. Modelling, vol. 53, no. 5-6, pp. 755–768, 2011, doi: 10.1016/j.mcm.2010.10.013.
L. W. Tu, An introduction to manifolds, 2nd ed., ser. Universitext. Springer, New York, 2011, doi: 10.1007/978-1-4419-7400-6.
J. H. Wang, “Convergence of Newton’s method for sections on Riemannian manifolds,” J. Optim. Theory Appl., vol. 148, no. 1, pp. 125–145, 2011, doi: 10.1007/s10957-010-9748-4.
- UGC (No: NFO-2018- 19-OBC-JHA-68560)
Most read articles by the same author(s)
- Shwet Nisha, P. K. Parida, Super-Halley method under majorant conditions in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
Similar Articles
- Carl Chiarella, Ferenc Szidarovszky, A Multiobjective Model of Oligopolies under Uncertainty , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- László Kapolyi, Network Oligopolies with Multiple Markets , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Haiyan Qiao, Brandon Edwards, A General Purpose Platform for Data Clustering Analysis , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Jürgen Tolksdorf, Dirac Type Gauge Theories – Motivations and Perspectives , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Qikeng Lu, Global Solutions of Yang-Mills Equation , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Aboudramane Guiro, Idrissa Ibrango, Stanislas Ouaro, Weak homoclinic solutions to discrete nonlinear problems of Kirchhoff type with variable exponents , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- A.G. Ramm, One-dimensional inverse scattering and spectral problems , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Michael J. Mezzino, Numerical Solutions of Ordinary Differential Equations , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- H. M. Srivastava, Fractional calculus and its applications , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Vadim N. Biktashev, Envelope equations for modulated non-conservative waves , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
<< < 5 6 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 C. Prasad et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.