Steffensen-like method in Riemannian manifolds
-
Chandresh Prasad
prasadchandresh20592@gmail.com
-
P. K. Parida
pkparida@cuj.ac.in
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.525Abstract
In this paper, we present semilocal convergence of Steffensen-like method for approximating zeros of a vector field in Riemannian manifolds. We establish the convergence of Steffensen-like method under Lipschitz continuity condition on first order covariant derivative of a vector field. Finally, two examples are given to show the application of our theorem.
Keywords
Mathematics Subject Classification:
P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds. Princeton University Press, Princeton, NJ, 2008, doi: 10.1515/9781400830244.
R. L. Adler, J.-P. Dedieu, J. Y. Margulies, M. Martens, and M. Shub, “Newton’s method on Riemannian manifolds and a geometric model for the human spine,” IMA J. Numer. Anal., vol. 22, no. 3, pp. 359–390, 2002, doi: 10.1093/imanum/22.3.359.
F. Alvarez, J. Bolte, and J. Munier, “A unifying local convergence result for Newton’s method in Riemannian manifolds,” Found. Comput. Math., vol. 8, no. 2, pp. 197–226, 2008, doi: 10.1007/s10208-006-0221-6.
S. Amat, I. K. Argyros, S. Busquier, R. Castro, S. Hilout, and S. Plaza, “Traub-type high order iterative procedures on Riemannian manifolds,” SeMA J., vol. 63, pp. 27–52, 2014, doi: 10.1007/s40324-014-0010-0.
S. Amat, J. A. Ezquerro, and M. A. Hernández-Verón, “On a Steffensen-like method for solving nonlinear equations,” Calcolo, vol. 53, no. 2, pp. 171–188, 2016, doi: 10.1007/s10092-015-0142- 3.
I. K. Argyros, “An improved unifying convergence analysis of Newton’s method in Riemannian manifolds,” J. Appl. Math. Comput., vol. 25, no. 1-2, pp. 345–351, 2007, doi: 10.1007/BF02832359.
I. K. Argyros, Convergence and applications of Newton-type iterations. Springer, New York, 2008.
I. K. Argyros, Y. J. Cho, and S. Hilout, Numerical Methods for Equations and Variational Inclusions. New York: CRC Press/Taylor and Francis Group, 2012.
I. K. Argyros, Y. J. Cho, and S. Hilout, Numerical methods for equations and its applications. CRC Press, Boca Raton, FL, 2012.
I. K. Argyros, S. Hilout, and M. A. Tabatabai, Mathematical modelling with applications in biosciences and engineering. Nova Science Publishers, Incorporated, 2011.
R. A. Castro, J. C. Rodríguez, W. W. Sierra, G. L. Di Giorgi, and S. J. Gómez, “Chebyshev-Halley’s method on Riemannian manifolds,” J. Comput. Appl. Math., vol. 336, pp. 30–53, 2018, doi: 10.1016/j.cam.2017.12.019.
J.-P. Dedieu and D. Nowicki, “Symplectic methods for the approximation of the exponential map and the Newton iteration on Riemannian submanifolds,” J. Complexity, vol. 21, no. 4, pp. 487–501, 2005, doi: 10.1016/j.jco.2004.09.010.
J.-P. Dedieu, P. Priouret, and G. Malajovich, “Newton’s method on Riemannian manifolds: convariant alpha theory,” IMA J. Numer. Anal., vol. 23, no. 3, pp. 395–419, 2003, doi: 10.1093/imanum/23.3.395.
O. P. Ferreira and B. F. Svaiter, “Kantorovich’s theorem on Newton’s method in Riemannian manifolds,” J. Complexity, vol. 18, no. 1, pp. 304–329, 2002, doi: 10.1006/jcom.2001.0582.
D. Groisser, “Newton’s method, zeroes of vector fields, and the Riemannian center of mass,” Adv. in Appl. Math., vol. 33, no. 1, pp. 95–135, 2004, doi: 10.1016/j.aam.2003.08.003.
S. Lang, Differential and Riemannian manifolds, 3rd ed., ser. Graduate Texts in Mathematics. Springer-Verlag, New York, 1995, vol. 160, doi: 10.1007/978-1-4612-4182-9.
W. Li, F. Szidarovszky, and Y. Kuang, “Notes on the stability of dynamic economic systems,” Appl. Math. Comput., vol. 108, no. 2-3, pp. 85–89, 2000, doi: 10.1016/S0096-3003(98)10140-6.
T. Sakai, Riemannian geometry, ser. Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1996, vol. 149, doi: 10.1090/mmono/149.
M. A. Tabatabai, W. M. Eby, and K. P. Singh, “Hyperbolastic modeling of wound healing,” Math. Comput. Modelling, vol. 53, no. 5-6, pp. 755–768, 2011, doi: 10.1016/j.mcm.2010.10.013.
L. W. Tu, An introduction to manifolds, 2nd ed., ser. Universitext. Springer, New York, 2011, doi: 10.1007/978-1-4419-7400-6.
J. H. Wang, “Convergence of Newton’s method for sections on Riemannian manifolds,” J. Optim. Theory Appl., vol. 148, no. 1, pp. 125–145, 2011, doi: 10.1007/s10957-010-9748-4.
- UGC (No: NFO-2018- 19-OBC-JHA-68560)
Most read articles by the same author(s)
- Shwet Nisha, P. K. Parida, Super-Halley method under majorant conditions in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
Similar Articles
- Aymen Ammar, Aref Jeribi, Kamel Mahfoudhi, Generalized trace pseudo-spectrum of matrix pencils , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Wilfrid Hodges, Saharon Shelah, Naturality and definability II , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Rodrigue Sanou, Idrissa Ibrango, Blaise Koné, Aboudramane Guiro, Weak solutions to Neumann discrete nonlinear system of Kirchhoff type , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Luciano Souza, Wilson Rosa de O. Júnior, Cícero Carlos R. de Brito, Christophe Chesneau, Renan L. Fernandes, Tiago A. E. Ferreira, Tan-G class of trigonometric distributions and its applications , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Adara M. Blaga, Manoj Ray Bakshi, Kanak Kanti Baishya, Hyper generalized pseudo \(Q\)-symmetric semi-Riemannian manifolds , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ioannis K. Argyros, Santhosh George, Extended domain for fifth convergence order schemes , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Stanislas Ouaro, Noufou Rabo, Urbain Traoré, Numerical analysis of nonlinear parabolic problems with variable exponent and \(L^1\) data , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Filippo Cammaroto, Infinitely many solutions for a nonlinear Navier problem involving the \(p\)-biharmonic operator , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Mohd Danish Siddiqi, Aliya Naaz Siddiqui, Ali H. Hakami, M. Hasan, Estimation of sharp geometric inequality in \(D_{\alpha}\)-homothetically deformed Kenmotsu manifolds , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
<< < 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 C. Prasad et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.