Steffensen-like method in Riemannian manifolds
-
Chandresh Prasad
prasadchandresh20592@gmail.com
-
P. K. Parida
pkparida@cuj.ac.in
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.525Abstract
In this paper, we present semilocal convergence of Steffensen-like method for approximating zeros of a vector field in Riemannian manifolds. We establish the convergence of Steffensen-like method under Lipschitz continuity condition on first order covariant derivative of a vector field. Finally, two examples are given to show the application of our theorem.
Keywords
Mathematics Subject Classification:
P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds. Princeton University Press, Princeton, NJ, 2008, doi: 10.1515/9781400830244.
R. L. Adler, J.-P. Dedieu, J. Y. Margulies, M. Martens, and M. Shub, “Newton’s method on Riemannian manifolds and a geometric model for the human spine,” IMA J. Numer. Anal., vol. 22, no. 3, pp. 359–390, 2002, doi: 10.1093/imanum/22.3.359.
F. Alvarez, J. Bolte, and J. Munier, “A unifying local convergence result for Newton’s method in Riemannian manifolds,” Found. Comput. Math., vol. 8, no. 2, pp. 197–226, 2008, doi: 10.1007/s10208-006-0221-6.
S. Amat, I. K. Argyros, S. Busquier, R. Castro, S. Hilout, and S. Plaza, “Traub-type high order iterative procedures on Riemannian manifolds,” SeMA J., vol. 63, pp. 27–52, 2014, doi: 10.1007/s40324-014-0010-0.
S. Amat, J. A. Ezquerro, and M. A. Hernández-Verón, “On a Steffensen-like method for solving nonlinear equations,” Calcolo, vol. 53, no. 2, pp. 171–188, 2016, doi: 10.1007/s10092-015-0142- 3.
I. K. Argyros, “An improved unifying convergence analysis of Newton’s method in Riemannian manifolds,” J. Appl. Math. Comput., vol. 25, no. 1-2, pp. 345–351, 2007, doi: 10.1007/BF02832359.
I. K. Argyros, Convergence and applications of Newton-type iterations. Springer, New York, 2008.
I. K. Argyros, Y. J. Cho, and S. Hilout, Numerical Methods for Equations and Variational Inclusions. New York: CRC Press/Taylor and Francis Group, 2012.
I. K. Argyros, Y. J. Cho, and S. Hilout, Numerical methods for equations and its applications. CRC Press, Boca Raton, FL, 2012.
I. K. Argyros, S. Hilout, and M. A. Tabatabai, Mathematical modelling with applications in biosciences and engineering. Nova Science Publishers, Incorporated, 2011.
R. A. Castro, J. C. Rodríguez, W. W. Sierra, G. L. Di Giorgi, and S. J. Gómez, “Chebyshev-Halley’s method on Riemannian manifolds,” J. Comput. Appl. Math., vol. 336, pp. 30–53, 2018, doi: 10.1016/j.cam.2017.12.019.
J.-P. Dedieu and D. Nowicki, “Symplectic methods for the approximation of the exponential map and the Newton iteration on Riemannian submanifolds,” J. Complexity, vol. 21, no. 4, pp. 487–501, 2005, doi: 10.1016/j.jco.2004.09.010.
J.-P. Dedieu, P. Priouret, and G. Malajovich, “Newton’s method on Riemannian manifolds: convariant alpha theory,” IMA J. Numer. Anal., vol. 23, no. 3, pp. 395–419, 2003, doi: 10.1093/imanum/23.3.395.
O. P. Ferreira and B. F. Svaiter, “Kantorovich’s theorem on Newton’s method in Riemannian manifolds,” J. Complexity, vol. 18, no. 1, pp. 304–329, 2002, doi: 10.1006/jcom.2001.0582.
D. Groisser, “Newton’s method, zeroes of vector fields, and the Riemannian center of mass,” Adv. in Appl. Math., vol. 33, no. 1, pp. 95–135, 2004, doi: 10.1016/j.aam.2003.08.003.
S. Lang, Differential and Riemannian manifolds, 3rd ed., ser. Graduate Texts in Mathematics. Springer-Verlag, New York, 1995, vol. 160, doi: 10.1007/978-1-4612-4182-9.
W. Li, F. Szidarovszky, and Y. Kuang, “Notes on the stability of dynamic economic systems,” Appl. Math. Comput., vol. 108, no. 2-3, pp. 85–89, 2000, doi: 10.1016/S0096-3003(98)10140-6.
T. Sakai, Riemannian geometry, ser. Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1996, vol. 149, doi: 10.1090/mmono/149.
M. A. Tabatabai, W. M. Eby, and K. P. Singh, “Hyperbolastic modeling of wound healing,” Math. Comput. Modelling, vol. 53, no. 5-6, pp. 755–768, 2011, doi: 10.1016/j.mcm.2010.10.013.
L. W. Tu, An introduction to manifolds, 2nd ed., ser. Universitext. Springer, New York, 2011, doi: 10.1007/978-1-4419-7400-6.
J. H. Wang, “Convergence of Newton’s method for sections on Riemannian manifolds,” J. Optim. Theory Appl., vol. 148, no. 1, pp. 125–145, 2011, doi: 10.1007/s10957-010-9748-4.
- UGC (No: NFO-2018- 19-OBC-JHA-68560)
Most read articles by the same author(s)
- Shwet Nisha, P. K. Parida, Super-Halley method under majorant conditions in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
Similar Articles
- Stephen McDowall, Optical Tomography for Media with Variable Index of Refraction , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- G. Divyashree, Venkatesha, Certain results on the conharmonic curvature tensor of \( (\kappa,\mu) \)-contact metric manifolds , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- V.V. Kirichenko, B.V. Novikov, A.P. Petravchuk, Finite Fields , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Rubén A. Hidalgo, A sufficiently complicated noded Schottky group of rank three , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Alexander A. Kovalevsky, Francesco Nicolosi, On a condition for the nonexistence of \(W\)-solutions of nonlinear high-order equations with L\(^1\) -data , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Shyamal Kumar Hui, On weak concircular symmetries of trans-Sasakian manifolds , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- Bo Zhang, Boundedness and Global Attractivity of Solutions for a System of Nonlinear Integral Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Tingxiu Wang, Some General Theorems on Uniform Boundedness for Functional Differential Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Stanislas Ouaro, Noufou Sawadogo, Nonlinear elliptic \(p(u)-\) Laplacian problem with Fourier boundary condition , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Mouffak Benchohra, Naima Hamidi, Fractional Order Differential Inclusions via the Topological Transversality Method , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 C. Prasad et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.