A note on Buell’s Theorem on length four Büchi sequences
-
Fabrice Jaillet
fabrice.jaillet@liris.cnrs.fr
-
Xavier Vidaux
xvidaux@udec.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2701.001Abstract
Büchi sequences are sequences whose second difference of squares is the sequence (2,..., 2), like for instance (6, 23, 32, 39) – so they can be seen as a generalization of arithmetic progressions. No (non-trivial) length 5 Büchi sequence is known to exist. Length four Büchi sequences were parameterized by D. A. Buell in 1987. We revisit his theorem, fixing the statement (about 26% of the Büchi sequences from R. G. E. Pinch's 1993 table were missed), and giving a much simpler proof.
Keywords
Mathematics Subject Classification:
D. A. Buell, “Integer squares with constant second difference”, Math. Comp., vol. 49, no. 180, pp. 635–644, 1987, doi: 10.2307/2008336.
D. Hensley, “Sequences of squares with second difference of two and a conjecture of Büchi”, 1980/1983, unpublished.
D. Hensley, “Sequences of squares with second difference of two and a problem of logic”, 1980/1983, unpublished.
J. Lipman, “Büchi’s problem about squares”, 2006, rev. 2021, https://www.math.purdue.edu/∼jlipman/Buchitalk-Huge.pdf.
H. Pasten, T. Pheidas, and X. Vidaux, “A survey on Büchi’s problem: new presentations and open problems”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), vol. 377, pp. 111–140, 243, 2010, doi: 10.1007/s10958-010-0181-x.
H. Pasten, “Powerful values of polynomials and a conjecture of Vojta”, J. Number Theory, vol. 133, no. 9, pp. 2964–2998, 2013, doi: 10.1016/j.jnt.2013.03.001.
R. G. E. Pinch, “Squares in quadratic progression”, Math. Comp., vol.60, no.202, pp.841–845, 1993, doi: 10.2307/2153124.
P. Sáez and X. Vidaux, “A characterization of Büchi’s integer sequences of length 3”, Acta Arith., vol. 149, no. 1, pp. 37–56, 2011, doi: 10.4064/aa149-1-3.
P. Sáez, X. Vidaux, and M. Vsemirnov, “Endomorphisms and dynamic on the affine Büchi’s quadratic 4 surface”, Mosc. Math. J., vol. 24, no. 3, pp. 441–459, 2024, doi: 10.17323/1609-4514-2024-24-3-441-459.
X. Vidaux, “Polynomial parametrizations of length 4 Büchi sequences”, Acta Arith., vol. 150, no. 3, pp. 209–226, 2011, doi: 10.4064/aa150-3-1.
P. Vojta, “Diagonal quadratic forms and Hilbert’s tenth problem”, in Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), ser. Contemp. Math. Amer. Math. Soc., Providence, RI, 2000, vol. 270, pp. 261–274, doi: 10.1090/conm/270/04378.
- ANID Fondecyt research project 1210329
Similar Articles
- Ovidiu Furdui, Alina Sîntămărian, Cubic and quartic series with the tail of \(\ln 2\) , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- A. Zerki, K. Bachouche, K. Ait-Mahiout, Existence of solutions for higher order \(\phi-\)Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Abdelhamid Bensalem, Abdelkrim Salim, Bashir Ahmad, Mouffak Benchohra, Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fréchet spaces , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Raymond Mortini, A nice asymptotic reproducing kernel , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Mohammadi El Hamdaoui, Abdelkarim Boua, Quotient rings satisfying some identities , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Abhijit Banerjee, Arpita Kundu, On uniqueness of \(L\)-functions in terms of zeros of strong uniqueness polynomial , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Hamza El-Houari, Lalla Saádia Chadli, Hicham Moussa, On a class of fractional Γ(.)-Kirchhoff-Schrödinger system type , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Anthony Sofo, Families of skew linear harmonic Euler sums involving some parameters , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Fatima Fennour, Soumia Saïdi, On a class of evolution problems driven by maximal monotone operators with integral perturbation , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Satyam Narayan Srivastava, Smita Pati, John R. Graef, Alexander Domoshnitsky, Seshadev Padhi, Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
<< < 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 F. Jaillet et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.