A note on Buell’s Theorem on length four Büchi sequences
-
Fabrice Jaillet
fabrice.jaillet@liris.cnrs.fr
-
Xavier Vidaux
xvidaux@udec.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2701.001Abstract
Büchi sequences are sequences whose second difference of squares is the sequence (2,..., 2), like for instance (6, 23, 32, 39) – so they can be seen as a generalization of arithmetic progressions. No (non-trivial) length 5 Büchi sequence is known to exist. Length four Büchi sequences were parameterized by D. A. Buell in 1987. We revisit his theorem, fixing the statement (about 26% of the Büchi sequences from R. G. E. Pinch's 1993 table were missed), and giving a much simpler proof.
Keywords
Mathematics Subject Classification:
D. A. Buell, “Integer squares with constant second difference”, Math. Comp., vol. 49, no. 180, pp. 635–644, 1987, doi: 10.2307/2008336.
D. Hensley, “Sequences of squares with second difference of two and a conjecture of Büchi”, 1980/1983, unpublished.
D. Hensley, “Sequences of squares with second difference of two and a problem of logic”, 1980/1983, unpublished.
J. Lipman, “Büchi’s problem about squares”, 2006, rev. 2021, https://www.math.purdue.edu/∼jlipman/Buchitalk-Huge.pdf.
H. Pasten, T. Pheidas, and X. Vidaux, “A survey on Büchi’s problem: new presentations and open problems”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), vol. 377, pp. 111–140, 243, 2010, doi: 10.1007/s10958-010-0181-x.
H. Pasten, “Powerful values of polynomials and a conjecture of Vojta”, J. Number Theory, vol. 133, no. 9, pp. 2964–2998, 2013, doi: 10.1016/j.jnt.2013.03.001.
R. G. E. Pinch, “Squares in quadratic progression”, Math. Comp., vol.60, no.202, pp.841–845, 1993, doi: 10.2307/2153124.
P. Sáez and X. Vidaux, “A characterization of Büchi’s integer sequences of length 3”, Acta Arith., vol. 149, no. 1, pp. 37–56, 2011, doi: 10.4064/aa149-1-3.
P. Sáez, X. Vidaux, and M. Vsemirnov, “Endomorphisms and dynamic on the affine Büchi’s quadratic 4 surface”, Mosc. Math. J., vol. 24, no. 3, pp. 441–459, 2024, doi: 10.17323/1609-4514-2024-24-3-441-459.
X. Vidaux, “Polynomial parametrizations of length 4 Büchi sequences”, Acta Arith., vol. 150, no. 3, pp. 209–226, 2011, doi: 10.4064/aa150-3-1.
P. Vojta, “Diagonal quadratic forms and Hilbert’s tenth problem”, in Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), ser. Contemp. Math. Amer. Math. Soc., Providence, RI, 2000, vol. 270, pp. 261–274, doi: 10.1090/conm/270/04378.
- ANID Fondecyt research project 1210329
Similar Articles
- Abdelhai Elazzouzi, Khalil Ezzinbi, Mohammed Kriche, On the periodic solutions for some retarded partial differential equations by the use of semi-Fredholm operators , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Robert Auffarth, Giancarlo Lucchini Arteche, Pablo Quezada, Smooth quotients of abelian surfaces by finite groups that fix the origin , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Stanislas Ouaro, Noufou Rabo, Urbain Traoré, Numerical analysis of nonlinear parabolic problems with variable exponent and \(L^1\) data , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Fouad Fredj, Hadda Hammouche, On existence results for hybrid \(\psi-\)Caputo multi-fractional differential equations with hybrid conditions , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Said Ait Temghart, Chakir Allalou, Adil Abbassi, Existence results for a class of local and nonlocal nonlinear elliptic problems , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Ovidiu Furdui, Alina Sîntămărian, Cubic and quartic series with the tail of \(\ln 2\) , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- A. Zerki, K. Bachouche, K. Ait-Mahiout, Existence of solutions for higher order \(\phi-\)Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Abdelhamid Bensalem, Abdelkrim Salim, Bashir Ahmad, Mouffak Benchohra, Existence and controllability of integrodifferential equations with non-instantaneous impulses in Fréchet spaces , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Raymond Mortini, A nice asymptotic reproducing kernel , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Mohammadi El Hamdaoui, Abdelkarim Boua, Quotient rings satisfying some identities , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
<< < 14 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 F. Jaillet et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.