Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación

The maximal function, an Orlicz-Lorentz subspace, and the multiplication operator

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2702.233

Abstract

The Orlicz-Lorentz space is defined in terms of Young functions applied to the decreasing rearrangement of a function. In this article, we define a subspace of this space, using the maximal function, and study its structure as a Banach space. Additionally, we define a multiplication operator on these subspaces and characterize its most relevant properties.

Resumen

El espacio de Orlicz-Lorentz se define en términos de funciones de Young aplicadas al reordenamiento decreciente de una función. En este artículo, definimos un subespacio de este espacio, usando la función maximal, y estudiamos su estructura como espacio de Banach. Además, definimos un operador de multiplicación en estos subespacios y caracterizamos sus propiedades más relevantes.

Keywords

Orlicz-Lorentz spaces , maximal function , multiplication operator

Mathematics Subject Classification:

47B33 , 47B38 , 46E30
  • Pages: 233–265
  • Date Published: 2025-08-18
  • In Press

M. B. Abrahamse, Multiplication operators, ser. Lecture notes in Math. Springer Verlag, 1978.

Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, ser. Grad. Stud. Math. Providence, RI: American Mathematical Society (AMS), 2002, vol. 50.

S. C. Arora, G. Datt, and S. Verma, “Multiplication operators on Lorentz spaces,” Indian J. Math., vol. 48, no. 3, pp. 317–329, 2006.

S. Axler, “Multiplication operators on bergman spaces,” J. Reine Angew. Math., vol. 336, pp. 26–44, 1982, doi: 10.1515/crll.1982.336.26.

C. Bennett and R. Sharpley, Interpolation of operators, ser. Pure Appl. Math., Academic Press. Boston, MA etc.: Academic Press, Inc., 1988, vol. 129.

R. E. Castillo and H. C. Chaparro, Classical and multidimensional Lorentz spaces. Gruyter, 2021, doi: 10.1515/9783110750355. Berlin: De

R. E. Castillo, H. C. Chaparro, and J. C. Ramos-Fernández, “Orlicz-Lorentz spaces and their multiplication operators,” Hacet. J. Math. Stat., vol. 44, no. 5, pp. 991–1009, 2015, doi: 10.15672/HJMS.2015449663.

R. E. Castillo, R. León, and E. Trousselot, “Multiplication operator on L(p,q) spaces,” Panam. Math. J., vol. 19, no. 1, pp. 37–44, 2009.

P. Foralewski and J. Kończak, “Orlicz-Lorentz function spaces equipped with the Orlicz norm,” Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, vol. 117, no. 3, p. 23, 2023, Art. ID 120, doi: 10.1007/s13398-023-01449-z.

L. Grafakos, Classical Fourier analysis, 2nd ed., ser. Grad. Texts Math. Springer, 2008, vol. 249, doi: 10.1007/978-0-387-09432-8.

New York, NY:

H. Hudzik, A. Kamińska, and M. Mastyło, “On geometric properties of Orlicz-Lorentz spaces,” Can. Math. Bull., vol. 40, no. 3, pp. 316–329, 1997, doi: 10.4153/CMB-1997-038-6.

H. Hudzik, A. Kaminska, and M. Mastylo, “On the dual of Orlicz-Lorentz space,” Proc. Am. Math. Soc., vol. 130, no. 6, pp. 1645–1654, 2002, doi: 10.1090/S0002-9939-02-05997-X.

B. S. Komal and S. Gupta, “Multiplication operators between Orlicz spaces,” Integral Equations Oper. Theory, vol. 41, no. 3, pp. 324–330, 2001, doi: 10.1007/BF01203174.

S. J. Montgomery-Smith, “Orlicz-Lorentz spaces,” in Proceedings of the Orlicz memorial conference, held in Oxford, MS, USA, March 21-23, 1991. Oxford, MS: The University of Mississippi, Department of Mathematics, 1991.

E. T. Oklander, Interpolation, Lorentz spaces and the theorem of Marcinkiewicz. (Interpolacion, espacios de Lorentz y teorema de Marcinkiewicz), ser. Cursos Semin. Math. Buenos Aires: Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento

de Matemática, 1965, vol. 20.

M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, ser. Pure Appl. Math., Marcel Dekker. York etc.: Marcel Dekker, Inc., 1991, vol. 146. New

R. K. Singh and A. Kumar, “Multiplication operators and composition operators with closed ranges,” Bull. Aust. Math. Soc., vol. 16, pp. 247–252, 1977, doi: 10.1017/S0004972700023261.

H. Takagi, “Fredholm weighted composition operators,” Integral Equations Oper. Theory, vol. 16, no. 2, pp. 267–276, 1993, doi: 10.1007/BF01358956.

A. Torchinsky, “Interpolation of operations and Orlicz classes,” Stud. Math., vol. 59, pp. 177–207, 1976, doi: 10.4064/sm-59-2-177-207.

Similar Articles

<< < 19 20 21 22 23 24 25 26 27 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2025-08-18

How to Cite

[1]
R. E. Castillo and H. C. Chaparro, “Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación: The maximal function, an Orlicz-Lorentz subspace, and the multiplication operator”, CUBO, pp. 233–265, Aug. 2025.

Issue

Section

Articles

Similar Articles

<< < 19 20 21 22 23 24 25 26 27 > >> 

You may also start an advanced similarity search for this article.