An asymptotic estimate of Aoki’s function
-
Vito Lampret
vito.lampret@guest.arnes.si
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2801.099Abstract
The Aoki's function \(A(x):=\left(1+\frac{1}{x}\right)^x+\left(1-\frac{1}{x}\right)^{-x}\) is sharply estimated for \(x\gg1\). For example, we have the zero approximation given as
\[
2e\left(1+\frac{1}{4x^2-1}\right)<A(x)
<2e\left(1+\frac{3}{4x^2-1}\right),\quad x\ge \frac{29}{14}.
\]
Keywords
Mathematics Subject Classification:
M. Aoki, Y. Nishizawa, R.Suzuki, and G. Takamori, “Approximations by the fractional function of the sum of two functions converging to e,” Appl. Math. E-Notes, vol. 24, pp. 19–26, 2024.
C.-P. Chen and R. B. Paris, “An inequality involving the constant e and a generalized Carleman-type inequality,” Math. Inequal. Appl., vol. 23, no. 4, pp. 1197–1203, 2020, doi: 10.7153/mia-2020-23-92.
V. Lampret, “Sharp, double inequalities bounding the function (1 + x)(1/x) and a refinement of Carleman’s inequality,” Math. Inequal. Appl., vol. 26, no.1, pp. 93–107, 2023, doi: 10.7153/mia-2023-26-08.
Wolfram Research, Inc., “Mathematica,” Version 7.0, Champaign, IL, USA, Nov. 2008, computer software.
Most read articles by the same author(s)
- Vito Lampret, Double asymptotic inequalities for the generalized Wallis ratio , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Vito Lampret, Estimating the remainder of an alternating \(p\)-series revisited , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Vito Lampret, The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin‘s series , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Vito Lampret, Basic asymptotic estimates for powers of Wallis‘ ratios , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
Similar Articles
- Koji Aoyama, Yasunori Kimura, Viscosity approximation methods with a sequence of contractions , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- George A. Anastassiou, Higher order multivariate Fuzzy approximation by basic neural network operators , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- S.S. Dragomir, Refinements of the generalized trapezoid inequality in terms of the cumulative variation and applications , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Fethi Soltani, Slim Ben Rejeb, Laeng-Morpurgo-type uncertainty inequalities for the Weinstein transform , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- René Erlin Castillo, Héctor Camilo Chaparro, Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- S. Haq, K.S. Nisar, A.H. Khan, D.L. Suthar, Certain integral Transforms of the generalized Lommel-Wright function , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Sever Silvestru Dragomir, Eder Kikianty, Perturbed weighted trapezoid inequalities for convex functions with applications , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Vito Lampret, Estimating the remainder of an alternating \(p\)-series revisited , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- George Anastassiou, Voronovskaya type asymptotic expansions for multivariate quasi-interpolation neural network operators , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 V. Lampret.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










