Hybrid (Φ,Ψ,Ï,ζ,θ)−invexity frameworks and efficiency conditions for multiobjective fractional programming problems
-
Ram U. Verma
verma99@msn.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462015000100004Abstract
The parametrically generalized sufficient efficiency conditions for multiobjective fractional programming based on the hybrid (Φ,Ψ,Ï,ζ,θ)−invexities are developed and then efficient solutions to the multiobjective fractional programming problems are established. Plus, the obtained results on sufficient efficiency conditions are generalized to the case of the ϵ−efficient solutions. The results thus obtained generalize and unify a wider range of investigations on the theory and applications to the multiobjective fractional programming based on the hybrid (Φ,Ψ,Ï,ζ,θ)−invexity frameworks.
Keywords
Most read articles by the same author(s)
- Ram U. Verma, The ϵ−Optimality conditions for multiple objective fractional programming problems for generalized (Ï, η)−invexity of higher order , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Ram U. Verma, Linear convergence analysis for general proximal point algorithms involving (H, η) − monotonicity frameworks , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
Similar Articles
- Elhoussain Arhrrabi, Hamza El-Houari, Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems with singular nonlinearity , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Mohamed Bouaouid, Ahmed Kajouni, Khalid Hilal, Said Melliani, A class of nonlocal impulsive differential equations with conformable fractional derivative , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Hatem Mejjaoli, Firdous A. Shah, Nadia Sraieb, Generalized translation and convolution operators in the realm of linear canonical deformed Hankel transform with applications , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Wael Abdelhedi, Minkowski type inequalities for a generalized fractional integral , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Vikram Singh, Dwijendra N Pandey, Weighted pseudo Almost periodic solutions for fractional order stochastic impulsive differential equations , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- George A. Anastassiou, Right general fractional monotone approximation , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- Saïd Abbas, Mouffak Benchohra, Jamal-Eddine Lazreg, Gaston M. N‘Guérékata, Hilfer and Hadamard functional random fractional differential inclusions , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Bapurao C. Dhage, Existence and Attractivity Theorems for Nonlinear Hybrid Fractional Integrodifferential Equations with Anticipation and Retardation , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.










