Hybrid (Φ,Ψ,Ï,ζ,θ)−invexity frameworks and efficiency conditions for multiobjective fractional programming problems
-
Ram U. Verma
verma99@msn.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462015000100004Abstract
The parametrically generalized sufficient efficiency conditions for multiobjective fractional programming based on the hybrid (Φ,Ψ,Ï,ζ,θ)−invexities are developed and then efficient solutions to the multiobjective fractional programming problems are established. Plus, the obtained results on sufficient efficiency conditions are generalized to the case of the ϵ−efficient solutions. The results thus obtained generalize and unify a wider range of investigations on the theory and applications to the multiobjective fractional programming based on the hybrid (Φ,Ψ,Ï,ζ,θ)−invexity frameworks.
Keywords
Most read articles by the same author(s)
- Ram U. Verma, The ϵ−Optimality conditions for multiple objective fractional programming problems for generalized (Ï, η)−invexity of higher order , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Ram U. Verma, Linear convergence analysis for general proximal point algorithms involving (H, η) − monotonicity frameworks , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
Similar Articles
- K. Rajendra Prasad, Mahammad Khuddush, K. V. Vidyasagar, Infinitely many positive solutions for an iterative system of singular BVP on time scales , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Toka Diagana, Pseudo Almost Periodic Solutions to a Neutral Delay Integral Equation , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- Saleh S. Almuthaybiri, Jagan Mohan Jonnalagadda, Christopher C. Tisdell, Existence and uniqueness of solutions to discrete, third-order three-point boundary value problems , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Abderrahim Guerfi, Abdelouaheb Ardjouni, Existence, uniqueness, continuous dependence and Ulam stability of mild solutions for an iterative fractional differential equation , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- M. H. Saleh, S. M. Amer, M. A. Mohamed, N. S. Abdelrhman, Approximate solution of fractional integro-differential equation by Taylor expansion and Legendre wavelets methods , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Mouffak Benchohra, Naima Hamidi, Fractional Order Differential Inclusions via the Topological Transversality Method , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Fouad Fredj, Hadda Hammouche, On existence results for hybrid \(\psi-\)Caputo multi-fractional differential equations with hybrid conditions , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Ioannis K. Argyros, Saïd Hilout, Convergence conditions for the secant method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Hasnae El Hammar, Chakir Allalou, Adil Abbassi, Abderrazak Kassidi, The topological degree methods for the fractional \(p(\cdot)\)-Laplacian problems with discontinuous nonlinearities , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Mouffak Benchohra, Gaston M. N‘Guérékata, Djamila Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











