Engineering design under imprecise probabilities: computational complexity
-
Vladik Kreinovich
vladik@utep.edu
Downloads
DOI:
https://doi.org/10.4067/S0719-06462011000100007Abstract
In engineering design problems, we want to make sure that a certain quantity c of the designed system lies within given bounds – or at least that the probability of this quantity to be outside these bounds does not exceed a given threshold. We may have several such requirements – thus the requirement can be formulated as bounds [Fc (x), Fc(x)] on the cumulative distribution function Fc(x) of the quantity c; such bounds are known as a p-box.
The value of the desired quantity c depends on the design parameters a and the parameters b characterizing the environment: c = f(a, b). To achieve the design goal, we need to find the design parameters a for which the distribution Fc(x) for c = f(a, b) is within the given bounds for all possible values of the environmental variables b. The problem of computing such a is called backcalculation. For b, we also have ranges with different probabilities – i.e., also a p-box. Thus, we have backcalculation problem for p-boxes.
For p-boxes, there exist efficient algorithms for finding a design a that satisfies the given constraints. The next natural question is to find a design that satisfies additional constraints: on the cost, on the efficiency, etc. In this paper, we prove that that in general, the problem of finding such a design is computationally difficult (NP-hard). We show that this problem is NP-hard already in the simplest possible linearized case, when the dependence c = f(a, b) is linear. We also provide an example when an efficient algorithm is possible.
Keywords
Similar Articles
- Carl Chiarella, Ferenc Szidarovszky, Dynamic Oligopolies and Intertemporal Demand Interaction , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Carl Chiarella, Ferenc Szidarovszky, A Multiobjective Model of Oligopolies under Uncertainty , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Tamar Kugler, Ferenc Szidarovszky, An Inter-Group Conflict and its Relation to Oligopoly Theory , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Masaru Ikehata, A Remark on the Enclosure Method for a Body with an Unknown Homogeneous Background Conductivity , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Nasir Ganikhodjaev, Seyit Temir, Hasan Akin, The exact solution of the Potts models with external magnetic field on the Cayley tree , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Denis L. Blackmore, Yarema A. Prykarpatsky, Anatoliy M. Samoilenko, Anatoliy K. Prykarpatsky, The ergodic measures related with nonautonomous hamiltonian systems and their homology structure. Part 1 , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- S. K. Yadav, S. K. Chaubey, D. L. Suthar, Some geometric properties of η− Ricci solitons and gradient Ricci solitons on (ð‘™ð‘ð‘ )ð‘›âˆ’manifolds , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- S. Saitoh, Tikhonov regularization and the theory of reproducing kernels , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
- Saharon Shelah, Nɴ-free abelian group with no non-zero homomorphism to ℤ , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Zhenlai Han, Shurong Sun, Symplectic Geometry Applied to Boundary Problems on Hamiltonian Difference Systems , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.