A fixed point theorem of Reich in \(G\)-Metric spaces
-
Zead Mustafa
zmagablh@hu.edu.jo
-
Hamed Obiedat
hobiedat@hu.edu.jo
Downloads
DOI:
https://doi.org/10.4067/S0719-06462010000100008Abstract
In this paper we prove some fixed point results for mapping satisfying sufficient contractive conditions on a complete G-metric space, also we showed that if the G-metric space (X, G) is symmetric, then the existence and uniqueness of these fixed point results follows from Reich theorems in usual metric space (X, dG), where (X, dG) the metric induced by the G-metric space (X, G).
Keywords
Similar Articles
- Vito Lampret, Estimating the remainder of an alternating \(p\)-series revisited , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Rubí E. Rodríguez, Anita M. Rojas, Matías Saavedra-Lagos, Representaciones lineales irreducibles de grupos finitos en cuerpos de números , CUBO, A Mathematical Journal: In Press
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: In Press
You may also start an advanced similarity search for this article.