Multiple Solutions for Doubly Resonant Elliptic Problems Using Critical Groups
- 
							
								
							
								Ravi P. Agarwal
							
							
															
									
									
									agarwal@fit.edu
									
								
													
							
						 - 
							
								
							
								Michael E. Filippakis
							
							
															
									
									
									mfilip@math.ntua.gr
									
								
													
							
						 - 
							
								
							
								Donal O‘Regan
							
							
															
									
									
									donal.oregan@nuigalway.ie
									
								
													
							
						 - 
							
								
							
								Nikolaos S. Papageorgiou
							
							
															
									
									
									npapg@math.ntua.gr
									
								
													
							
						 
Downloads
Abstract
We consider a semilinear elliptic equation, with a right hand side nonlinearity which may grow linearly. Throughout we assume a double resonance at infinity in the spectral interval [λ1, λ2]. In this paper, we can also have resonance at zero or even double resonance in the order interval [λm, λm+1], m ≥ 2. Using Morse theory and in particular critical groups, we prove two multiplicity theorems.
Keywords
Most read articles by the same author(s)
- Mircea Balaj, Donal O‘Regan, An Intersection Theorem and its Applications , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
 - Donal O‘Regan, Reza Saadati, â„’ -Random and Fuzzy Normed Spaces and Classical Theory , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
 - Aris Aghanians, Donal O‘Regan, Kamal Fallahi, Kourosh Nourouzi, Some coupled coincidence point theorems in partially ordered uniform spaces , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
 - Yuqing Chen, Donal O‘Regan, Ravi P. Agarwal, Degree theory for the sum of VMO maps and maximal monotone maps , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
 - Chengjun Guo, Donal O‘Regan, Ravi P. Agarwal, Existence of Periodic Solutions for a Class of Second-Order Neutral Differential Equations with Multiple Deviating Arguments , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
 - Donal O‘Regan, Fixed point theory for compact absorbing contractions in extension type spaces , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
 - Ravi P. Agarwal, Triple solutions of constant sign for a system of fredholm integral equations , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
 
Similar Articles
- Shunsuke Kaji, The Extension of the Formula by Dupire , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
 - André Nachbin, Some Mathematical Models for Wave Propagation , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
 - Manuel Pinto, Nonlinear Impulsive Differential Systems , CUBO, A Mathematical Journal: Vol. 2 No. 1 (2000): CUBO, Matemática Educacional
 - Manuel Bustos V., Cálculo subdiferencial y conjuntos polares , CUBO, A Mathematical Journal: No. 11 (1995): CUBO, Revista de Matemática
 - Gastón E. Hernández, Behavior of multiple solutions for systems of semilinear elliptic equations , CUBO, A Mathematical Journal: No. 11 (1995): CUBO, Revista de Matemática
 - Oscar Rojo J., Ricardo Soto, On the construction of Jacobi matrices from spectral data , CUBO, A Mathematical Journal: No. 4 (1988): CUBO, Revista de Matemática
 - Ana Cecilia de la Maza, Remo Moresi, On rigid Hermitean lattices, II , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
 - Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
 - Svetlin G. Georgiev, Khaled Zennir, New approach to prove the existence of classical solutions for a class of nonlinear parabolic equations , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
 - Shuichi Otake, Tony Shaska, Some remarks on the non-real roots of polynomials , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
 
<< < 15 16 17 18 19 20 21 22 23 24 25 26 > >>
You may also start an advanced similarity search for this article.
						










