Limit Cycles of Li´enard-Type Dynamical Systems
- Valery A. Gaiko valery.gaiko@yahoo.com
Downloads
Abstract
In this paper, using geometric properties of the field rotation parameters, we present a solution of Smale‘s Thirteenth Problem on the maximum number of limit cycles for Li´enard‘s polynomial system, generalize the obtained results for special classes of polynomial systems, and complete the global qualitative analysis of a piecewise linear dynamical system approximating a Li´enard-type polynomial system with an arbitrary number of finite singularities.
Keywords
Similar Articles
- Mohd Danish Siddiqi, Aliya Naaz Siddiqui, Ali H. Hakami, M. Hasan, Estimation of sharp geometric inequality in \(D_{\alpha}\)-homothetically deformed Kenmotsu manifolds , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Raymond Mortini, A nice asymptotic reproducing kernel , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Dmitri V. Alekseevsky, Masoud Ganji, Gerd Schmalz, Andrea Spiro, The Levi-Civita connections of Lorentzian manifolds with prescribed optical geometries , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- R. Nithya Raj, R. Sundara Rajan, İsmail Naci Cangül, The metric dimension of cyclic hexagonal chain honeycomb triangular mesh and pencil graphs , CUBO, A Mathematical Journal: In Press
You may also start an advanced similarity search for this article.