Converse Fractional Opial Inequalities for Several Functions
-
George A. Anastassiou
ganastss@memphis.edu
Downloads
Abstract
A variety of very general Lp(0 < p < 1) form converse Opial type inequalities ([8]) is presented involving generalized fractional derivatives ([3],[6]) of several functions in different orders and powers. From the established results deriven other particular results of special interest.
Keywords
Most read articles by the same author(s)
- George A. Anastassiou, Right general fractional monotone approximation , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- George A. Anastassiou, Quantitative Approximation by a Kantorovich-Shilkret quasi-interpolation neural network operator , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- George A. Anastassiou, Approximation by Shift Invariant Univariate Sublinear-Shilkret Operators , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- George A. Anastassiou, Approximation by discrete singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- George A. Anastassiou, Foundations of generalized Prabhakar-Hilfer fractional calculus with applications , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- George A. Anastassiou, Higher order multivariate Fuzzy approximation by basic neural network operators , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- George A. Anastassiou, Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- George A. Anastassiou, Spline left fractional monotone approximation involving left fractional differential operators , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- George A. Anastassiou, Caputo fractional Iyengar type Inequalities , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
Similar Articles
- Djalal Boucenna, Abdellatif Ben Makhlouf, Mohamed Ali Hammami, On Katugampola fractional order derivatives and Darboux problem for differential equations , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Abdeldjalil Aouane, Smaïl Djebali, Mohamed Aziz Taoudi, Mild solutions of a class of semilinear fractional integro-differential equations subjected to noncompact nonlocal initial conditions , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Bashir Ahmad, Amjad F. Albideewi, Sotiris K. Ntouyas, Ahmed Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Sever Silvestru Dragomir, Eder Kikianty, Perturbed weighted trapezoid inequalities for convex functions with applications , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Mouffak Benchohra, Gaston M. N‘Guérékata, Djamila Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- M. W. Wong, Erhling's Inequality and Pseudo-Differential Operators on ð¿áµ–(IRá´º) , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Ganga Ram Gautam, Sandra Pinelas, Manoj Kumar, Namrata Arya, Jaimala Bishnoi, On the solution of \(\mathcal{T}-\)controllable abstract fractional differential equations with impulsive effects , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- George A. Anastassiou, Multiple general sigmoids based Banach space valued neural network multivariate approximation , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Ram U. Verma, Hybrid (Φ,Ψ,Ï,ζ,θ)−invexity frameworks and efficiency conditions for multiobjective fractional programming problems , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- Leigh C. Becker, T. A. Burton, Jensen's Inequality and Liapunov's Direct Method , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2008-03-01
How to Cite
[1]
G. A. Anastassiou, “Converse Fractional Opial Inequalities for Several Functions”, CUBO, vol. 10, no. 1, pp. 117–142, Mar. 2008.
Issue
Section
Articles